Advertisement

The Clock gene clone and its circadian rhythms in Pelteobagrus vachelli

  • Chuanjie Qin (覃川杰)
  • Ting Shao (邵婷)
Biology

Abstract

The Clock gene, a key molecule in circadian systems, is widely distributed in the animal kingdom. We isolated a 936-bp partial cDNA sequence of the Clock gene (Pva-clock) from the darkbarbel catfish Pelteobagrus vachelli that exhibited high identity with Clock genes of other species of fish and animals (65%–88%). The putative domains included a basic helix-loop-helix (bHLH) domain and two period-ARNT-single-minded (PAS) domains, which were also similar to those in other species of fish and animals. Pva-Clock was primarily expressed in the brain, and was detected in all of the peripheral tissues sampled. Additionally, the pattern of Pva-Clock expression over a 24-h period exhibited a circadian rhythm in the brain, liver and intestine, with the acrophase at zeitgeber time 21:35, 23:00, and 23:23, respectively. Our results provide insight into the function of the molecular Clock of P. vachelli.

Key word

Clock gene Pelteobagrus vachelli circadian rhythms circadian gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allada R, White N E, So W V, Hall J C, Rosbash M. 1998. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell, 93(5): 791–804.CrossRefGoogle Scholar
  2. Antoch M P, Song E J, Chang A M, Vitaterna M H, Zhao Y L, Wilsbacher L D, Sangoram A M, King D P, Pinto L H, Takanashi J S. 1997. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell, 89(4): 655–667.CrossRefGoogle Scholar
  3. Bell-Pedersen D, Cassone V M, Earnest D J, Golden S S, Hardin P E, Thomas T L, Zoran M J. 2005. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet., 6(7): 544–556.CrossRefGoogle Scholar
  4. Cerdá-Reverter J M, Rodríguez G M, Zanuy S, Carrillo M, Larhammar D. 1998. Cloning of neuropeptide Y, peptide YY, and peptide Y from sea bass (Dicentrarchus labrax), a marine teleost. Annals of the New York Academy of Sciences, 839: 493–495.CrossRefGoogle Scholar
  5. Chang D C, McWatters H G, Williams J A, Gotter A L, Levine J D, Reppert S M. 2003. Constructing a feedback loop with circadian Clock molecules from the silkmoth, Antheraea pernyi. J. Biol. Chem., 278(40): 38 149–38 158.CrossRefGoogle Scholar
  6. Davie D, Minghetti M, Migaud H. 2009. Seasonal variations in Clock-gene expression in Atlantic salmon (Salmo salar). Chronobiol. Int., 26(3): 379–395.CrossRefGoogle Scholar
  7. Del Pozo A, Vera L M, Sánchez J A, Sánchez-Vázquez F J. 2012. Molecular cloning, tissue distribution and daily expression of cry1 and cry2 clock genes in European seabass (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 163(3–4): 364–371.CrossRefGoogle Scholar
  8. Feliciano A, Vivas Y, de Pedro N, Delgado M J, Velarde E, Isorna E. 2011. Feeding time synchronizes Clock gene rhythmic expression in brain and liver of goldfish (Carassius auratus). J. Biol. Rhythms, 26(1): 24–33.CrossRefGoogle Scholar
  9. Hardin P E. 2005. The circadian timekeeping system of Drosophila. Curr. Biol., 15(17): 714–722.CrossRefGoogle Scholar
  10. Hardin P E. 2009. Molecular mechanisms of circadian timekeeping in Drosophila. Sleep and Biological Rhythms, 7(4): 235–242.CrossRefGoogle Scholar
  11. Hirota T, Fukada Y. 2004. Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog. Sci., 21(4): 359–368.CrossRefGoogle Scholar
  12. Kohsaka A, Bass J. 2007. A sense of time: how molecular clocks organize metabolism. Trends Endocrinol. Metab., 18(1): 4–11.CrossRefGoogle Scholar
  13. Li M, Chen L Q, Qin J G, Li E C, Yu N, Du Z Y. 2013. Growth performance, antioxidant status and immune response in darkbarbel catfish Pelteobagrus vachelli fed different PUFA/vitamin E dietary levels and exposed to high or low ammonia. Aquaculture, 406–407: 18–27.CrossRefGoogle Scholar
  14. Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method. Methods, 25(4): 402–408.CrossRefGoogle Scholar
  15. Martín-Robles Á J, Isorna E, Whitmore D, Muñoz-Cueto J A, Pendón C. 2011. The clock gene Period3 in the nocturnal flatfish Solea senegalensis: molecular cloning, tissue expression and daily rhythms in central areas. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 159(1): 7–15.CrossRefGoogle Scholar
  16. Montoya A, López-Olmeda J F, Yúfera M, Sánchez-Muros M J, Sánchez-Vázquez F J. 2010. Feeding time synchronises daily rhythms of behaviour and digestive physiology in gilthead seabream (Sparus aurata). Aquaculture, 306(1–4): 315–321.CrossRefGoogle Scholar
  17. Park J G, Park Y J, Sugama N, Kim S J, Takemura A. 2007. Molecular cloning and daily variations of the Period gene in a reef fish Siganus guttatus. J. Comp. Physiol. A, 193(4): 403–411.CrossRefGoogle Scholar
  18. Steeves T D L, King D P, Zhao Y L, Sangoram A M, Du F H, Bowcock A M, Moore R Y, Takahashi J S. 1999. Molecular cloning and characterization of the human CLOCK gene: expression in the suprachiasmatic nuclei. Genomics, 57(2): 189–200.CrossRefGoogle Scholar
  19. Stokkan K A, Yamazaki S, Tei H, Sakaki Y, Menaker M. 2001. Entrainment of the circadian clock in the liver by feeding. Science, 291(5503): 490–493.CrossRefGoogle Scholar
  20. Tamai T K, Carr A J, Whitmore D. 2005. Zebrafish circadian clocks: cells that see light. Biochem. Soc. Trans., 33(Pt5): 962–966.Google Scholar
  21. Velarde E, Haque R, Iuvone P M, Azpeleta C, Alonso-Gómez A L, Delgado M J. 2009. Circadian clock genes of goldfish, Carassius auratus: cDNA cloning and rhythmic expression of Period and Cryptochrome transcripts in retina, liver, and gut. J. Biol. Rhythms, 24(2): 104–113.CrossRefGoogle Scholar
  22. Whitmore D, Foulkes N S, Strähle U, Sassone-Corsi P. 1998. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat. Neurosci., 1(8): 701–707.CrossRefGoogle Scholar
  23. Xue J P, Ai Q H, Mai K S, Xu W, Yang Y H, Liufu Z G. 2011. Effects of melamine on growth performance and skin color of darkbarbel catfish (Pelteobagrus vachelli). Aquaculture, 320(1–2): 142–146.CrossRefGoogle Scholar
  24. Yang J S, Dai Z M, Yang F, Yang W J. 2006. Molecular cloning of Clock cDNA from the prawn, Macrobrachium rosenbergii. Brain Res., 1067(1): 13–24.CrossRefGoogle Scholar
  25. Yoshimura T, Suzuki Y, Makino E, Suzuki T, Kuroiwa A, Matsuda Y, Namikawa T, Ebihara S. 2000. Molecular analysis of avian circadian Clock genes. Mol. Brain Res., 78(1–2): 207–215.CrossRefGoogle Scholar
  26. Young M W, Kay S A. 2001. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet., 2(9): 702–715.CrossRefGoogle Scholar
  27. Yu W J, Hardin P E. 2006. Circadian oscillators of Drosophila and mammals. J. Cell. Sci., 119(Pt23): 4 793–4 795.CrossRefGoogle Scholar
  28. Zheng K K, Zhu X M, Han D, Yang Y X, Lei W, Xie S Q. 2010. Effects of dietary lipid levels on growth, survival and lipid metabolism during early ontogeny of Pelteobagrus vachelli larvae. Aquaculture, 299(1–4): 121–127.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Life SciencesNeijiang Normal UniversityNeijiangChina

Personalised recommendations