Impacts of salinity parameterizations on temperature simulation over and in a hypersaline lake

  • Lijuan Wen (文莉娟)
  • Nidhi Nagabhatla
  • Lin Zhao (赵林)
  • Zhaoguo Li (李照国)
  • Shiqiang Chen (陈世强)
Physics

Abstract

In this paper, we introduced parameterizations of the salinity effects (on heat capacity, thermal conductivity, freezing point and saturated vapor pressure) in a lake scheme integrated in the Weather Research and Forecasting model coupled with the Community Land Model (WRF-CLM). This was done to improve temperature simulation over and in a saline lake and to test the contributions of salinity effects on various water properties via sensitivity experiments. The modified lake scheme consists of the lake module in the CLM model, which is the land component of the WRF-CLM model. The Great Salt Lake (GSL) in the USA was selected as the study area. The simulation was performed from September 3, 2001 to September 30, 2002. Our results show that the modified WRF-CLM model that includes the lake scheme considering salinity effects can reasonably simulate temperature over and in the GSL. This model had much greater accuracy than neglecting salinity effects, particularly in a very cold event when that effect alters the freezing point. The salinity effect on saturated vapor pressure can reduce latent heat flux over the lake and make it slightly warmer. The salinity effect on heat capacity can also make lake temperature prone to changes. However, the salinity effect on thermal conductivity was found insignificant in our simulations.

Keyword

temperature simulation salinity parameterizations WRF-CLM Great Salt Lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali H, Madramootoo C A, Gwad S A. 2001. Evaporation model of Lake Qaroun as influenced by lake salinity. Irrig. Drain., 50(1): 9–17.CrossRefGoogle Scholar
  2. Bennett N D, Croke B F W, Guariso G, Guillaume J H A, Hamilton S H, Jakeman A J, Marsili-Libelli S, Newham L T H, Norton J P, Perrin C, Pierce S A, Robson B, Seppelt R, Voinov A A, Fath B D, Andreassian V. 2013. Characterising performance of environmental models. Environ. Modell. Softw, 40: 1–20, http://dx.doi.org/10.1016/j.envsoft.2012.09.011.CrossRefGoogle Scholar
  3. Bonan G B. 1995. Sensitivity of a GCM simulation to inclusion of inland water surfaces. J. Climate, 8(11): 2 691–2 704.CrossRefGoogle Scholar
  4. Brock T D. 1975. Salinity and the ecology of dunaliella from Great Salt Lake. J. Gen. Microbiol., 89: 285–292.CrossRefGoogle Scholar
  5. Calder I R, Neal C. 1984. Evaporation from Saline Lakes—a combination equation approach. Hydrol. Sciences J., 29(1): 89–97.CrossRefGoogle Scholar
  6. Carpenter D M. 1993. The lake effect of the Great Salt Lake—overview and forecast problems. Weather Forecast, 8(2): 181–193.CrossRefGoogle Scholar
  7. Cohen P. 1989. The ASME Handbook on Water Technology for Thermal Systems. American Society of Mechanical Engineers, New York. 1900p.Google Scholar
  8. Crosman E T, Horel J D. 2009. MODIS-derived surface temperature of the Great Salt Lake. Remote Sens. Environ., 113(1): 73–81.CrossRefGoogle Scholar
  9. Crump B C, Kling G W, Bahr M, Hobbie J E. 2003. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microb., 69(4): 2 253–2 268, http://dx.doi.org/10.1128/Aem.69.4.2253-2268.2003.CrossRefGoogle Scholar
  10. Diaz X, Johnson W P, Naftz D L. 2009. Selenium mass balance in the Great Salt Lake, Utah. Sci. Total. Environ., 407(7): 2 333–2 341.CrossRefGoogle Scholar
  11. Dickson D R, Yepson J H, Hales J V. 1965. Saturated vapor pressures over Great Salt Lake brine. J. Geophys. Res., 70: 500–503.CrossRefGoogle Scholar
  12. Diguilio R M, Teja A S. 1992. Thermal conductivity of aqueous salt solutions at high temperatures and high concentrations. Ind. Eng. Chem. Res., 31(4): 1 081–1 085.CrossRefGoogle Scholar
  13. Dudhia J. 1989. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two dimensional model. J. Atmos. Sci., 46(20): 3 077–3 107.CrossRefGoogle Scholar
  14. Flatau P J, Walko R L, Cotton W R. 1992. Polynomial fits to saturation vapor-pressure. J. Appl. Meteorol., 31(12): 1 507–1 513, http://dx.doi.org/10.1175/1520-0450(1992)031<1507:Pftsvp>2.0.Co;2.CrossRefGoogle Scholar
  15. Henderson-Sellers B. 1985. New formulation of eddy diffusion thermocline models. Appl. Math. Model., 9: 441–446.CrossRefGoogle Scholar
  16. Horel J, Splitt M, Dunn L, Pechmann J, White B, Ciliberti C, Lazarus S, Slemmer J, Zaff D, Burks J. 2002. Mesowest: cooperative mesonets in the western United States. B. Am. Meteorol. Soc., 83(2): 211–225.CrossRefGoogle Scholar
  17. Hostetler S W, Bartlein P J. 1990. Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resour. Res., 26(10): 2 603–2 612.Google Scholar
  18. Hostetler S W, Bates G T, Giorgi F. 1993. Interactive coupling of a lake thermal model with a regional climate model. J. Geophys. Res., 98(D3): 5 045–5 057.CrossRefGoogle Scholar
  19. Hostetler S W, Giorgi F, Bates G T, Bartlein P J. 1994. Lake-atmosphere feedbacks associated with paleolakes Bonneville and Lahontan. Sci., 263(5147): 665–668.CrossRefGoogle Scholar
  20. Kain J S. 2004. The Kain-Fritsch convective parameterization: an update. J. Appl. Meteorol., 43(1): 170–181.CrossRefGoogle Scholar
  21. Krinner G. 2003. Impact of lakes and wetlands on boreal climate. J. Geophys. Res., 108(D16), http://dx.doi.org/10.1029/2002jd002597.
  22. Lofgren B M. 1997. Simulated effects of idealized Laurentian Great Lakes on regional and large-scale climate. J. Climate, 10: 2 847–2 858.CrossRefGoogle Scholar
  23. Long Z, Perrie W, Gyakum J, Caya D, Laprise R. 2007. Northern lake impacts on local seasonal climate. J. Hydrometeorol., 8(4): 881–896.CrossRefGoogle Scholar
  24. Low R D H. 1969. A generalized equation for the solution effect in droplet growth. J. Atmos. Sci., 26: 608–611.CrossRefGoogle Scholar
  25. Magnuson J J, Bowser C J. 1990. A network for long-term ecological research in the United States. Freshwater Biol., 23(1): 137–143.CrossRefGoogle Scholar
  26. Martynov A, Sushama L, Laprise R, Winger K, Dugas B. 2012. Interactive lakes in the Canadian Regional Climate Model, version 5: the role of lakes in the regional climate of North America. Tellus. A, 64, http://dx.doi.org/10.3402/tellusa.v64i0.16226.
  27. Martynov A, Sushama L, Laprise R. 2010. Simulation of temperate freezing lakes by one-dimensional lake models: performance assessment for interactive coupling with regional climate models. Boreal Environ. Res., 15(2): 143–164.Google Scholar
  28. McDonald M E, Hershey A E, Miller M C. 1996. Global warming impacts on lake trout in arctic lakes. Limnol. Oceanogr., 41(5): 1 102–1 108.CrossRefGoogle Scholar
  29. Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran P C, Ebisuzaki W, Jovic D, Woollen J, Rogers E, Berbery E H, Ek M B, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W. 2006. North American regional reanalysis. B. Am. Meteorol. Soc., 87(3): 343–360, http://dx.doi.org/10.1175/Bams-87-3-343.CrossRefGoogle Scholar
  30. Mishra V, Cherkauer K A, Bowling L C. 2011. Changing thermal dynamics of lakes in the Great Lakes region: role of ice cover feedbacks. Global Planet Change, 75(3–4): 155–172.CrossRefGoogle Scholar
  31. Mlawer E J, Taubman S J, Brown P D, Iacono M J, Clough S A. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14): 16 663–16 682.CrossRefGoogle Scholar
  32. Mooij W M, Domis L N D S, Hulsmann S. 2008. The impact of climate warming on water temperature, timing of hatching and young-of-the-year growth of fish in shallow lakes in the Netherlands. J. Sea Res., 60(1–2): 32–43, http://dx.doi.org/10.1016/j.seares.2008.03.002.CrossRefGoogle Scholar
  33. Morrison H, Curry J A, Khvorostyanov V I. 2005. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62(6): 1 665–1 677.CrossRefGoogle Scholar
  34. Naftz D L, Millero F J, Jones B F, Green W R. 2011. An equation of state for hypersaline water in Great Salt Lake, Utah, USA. Aquat. Geochem., 17(6): 809–820, http://dx.doi.org/10.1007/s10498-011-9138-z.CrossRefGoogle Scholar
  35. Noh Y, Cheon W G, Hong S Y, Raasch S. 2003. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Boundlay. Meteorol., 107(2): 401–427.CrossRefGoogle Scholar
  36. Notz D, Worster M G. 2008. In situ measurements of the evolution of young sea ice. J. Geophys. Res., 113: C03001, http://dx.doi.org/10.1029/2007jc004333.Google Scholar
  37. Oleson K W, Dai Y, Bonan G, Bosilovich M, Dickson R, Dirmeyer P. 2004. Technical Description of the Community Land Model. http://www.cgd.ucar.edu/tss/clm/distribution/clm3.0/index.html.174p.Google Scholar
  38. Oleson K W, Niu G Y, Yang Z L, Lawrence D M, Thornton P E, Lawrence P J, Stockli R, Dickinson R E, Bonan G B, Levis S, Dai A, Qian T. 2008. Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113: G01021, http://01010.01029/02007JG000563.Google Scholar
  39. Onton D J, Steenburgh W J A. 2001. Diagnostic and sensitivity studies of the 7 December 1998 Great Salt Lake-effect snowstorm. Mon. Weather. Rev., 129(6): 1 318–1 338.CrossRefGoogle Scholar
  40. Oroud I M. 1995. Effects of salinity upon evaporation from pans and shallow lakes near the Dead Sea. Theor. Appl. Climatol., 52(3–4): 231–240.CrossRefGoogle Scholar
  41. Ozbek H, Phillips S L. 1980. Thermal conductivity of aqueous sodium chloride solutions from 20 to 330°C. J. Chem. Eng. Data., 25: 263–267.CrossRefGoogle Scholar
  42. Perroud M, Goyette S, Martynov A, Beniston M, Anneville O. 2009. Simulation of multiannual thermal profiles in deep Lake Geneva: a comparison of one-dimensional lake models. Limnol. Oceanogr., 54(5): 1 574–1 594.CrossRefGoogle Scholar
  43. Skamarock W C, Klemp J B. 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227(7): 3 465–3 485.CrossRefGoogle Scholar
  44. Small E E, Giorgi F, Sloan L C, Hostetler S. 2001. The effects of desiccation and climatic change on the hydrology of the Aral Sea. J. Climate, 14(3): 300–322, http://dx.doi.org/10.1175/1520-0442(2001)013〈0300:Teodac〉2.0.Co;2.CrossRefGoogle Scholar
  45. Steenburgh W J, Halvorson S F, Onton D J. 2000. Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Weather. Rev., 128(3): 709–727.CrossRefGoogle Scholar
  46. Steenburgh W J, Onton D J. 2001. Multiscale analysis of the 7 December 1998 Great Salt Lake-effect snowstorm. Mon. Weather. Rev., 129(6): 1 296–1 317.CrossRefGoogle Scholar
  47. Stephens D W. 1990. Changes in lake levels, salinity and the biological community of Great-Salt-Lake (Utah, USA), 1847–1987. Hydrobiologia, 197: 139–146, http://dx.doi.org/10.1007/Bf00026946.CrossRefGoogle Scholar
  48. Subin Z M, Riley W J, Jin J, Christianson D S, Torn M S, Kueppers L M. 2011. Ecosystem feedbacks to climate change in California: development, testing, and analysis using a coupled regional atmosphere and land surface model (WRF3-CLM3.5). Earth Interact., 15: 1–38, http://dx.doi.org/10.1175/2010EI331.1.CrossRefGoogle Scholar
  49. Sun H, Feistel R, Koch M, Markoe A. 2008. New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid. Deep Sea. Res. I, 55: 1 304–1 310.CrossRefGoogle Scholar
  50. UNESCO. 1983. Algorithms for computation of fundamental properties of seawater (Access online via http://unesdoc.unesco.org/images/0005/000598/059832eb.pdf).Google Scholar
  51. Wen L, Jin J. 2010a. Modeling and Analysis of the Impact of Great Salt Lake on Local Climate, paper presented at Spring Runoff Conference and Western Snow Conference, Logan, USA, Apr. p.20–21.Google Scholar
  52. Wen L, Jin J. 2010b. Modeling of the impacts of the Great Salt Lake salinity on local climate with the Weather Research and Forecasting model, paper presented at The 11th WRF workshop, Boulder, USA, Jun. p.21–25.Google Scholar
  53. Yusufova V D, Pepinov R I, Nikolaev V A, Guseinov G M. 1975. Thermal conductivity of aqueous solutions of NaCl. J. Eng. Phys. Therm., 29: 1 225–1 229.CrossRefGoogle Scholar
  54. Zeng X, Shaikh M, Dai Y, Dickinson R E, Myneni R. 2002. Coupling of the common land model to the NCAR community climate model. J. Climate, 15: 1 832–1 854.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lijuan Wen (文莉娟)
    • 1
    • 2
    • 4
  • Nidhi Nagabhatla
    • 3
    • 4
  • Lin Zhao (赵林)
    • 1
  • Zhaoguo Li (李照国)
    • 1
  • Shiqiang Chen (陈世强)
    • 1
  1. 1.Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  2. 2.Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  3. 3.Institut für Umweltplanung (IUP)Gottfried Wilhelm Leibniz UniversitätHannoverGermany
  4. 4.Asia-Pacific Economic Cooperation (APEC) Climate CenterBusanRepublic of Korea

Personalised recommendations