Glutathione S-transferase (GST) gene expression profiles in two marine bivalves exposed to BDE-47 and their potential molecular mechanisms

  • Fei Li (李斐)
  • Huifeng Wu (吴惠丰)
  • Qing Wang (王清)
  • Xuehua Li (李雪花)
  • Jianmin Zhao (赵建民)


Glutathione S-transferases (GSTs) are phase II enzymes that facilitate the detoxification of xenobiotics and play important roles in antioxidant defense. We investigated the expression patterns of seven Venerupis philippinarum GSTs (VpGSTs) and four Mytilus galloprovincialis GSTs (MgGSTs) following exposure to BDE-47. Differential expressions of the seven VpGSTs and four Mg GSTs transcripts were observed, with differences between the hepatopancreas and gills. Among these GSTs, the sigma classes (VpGSTS1, VpGSTS2, VpGSTS3, MgGST1, and MgGST3) were highly expressed in response to BDE-47 exposure, demonstrating their potential as molecular biomarkers for environmental biomonitoring studies. We obtained the three-dimensional crystal structures of VpGSTs and MgGSTs by homologous modeling. A model to elucidate the binding interactions between the ligands and receptors was defined by molecular docking. Hydrophobic and π were the most often observed interactions between BDE-47 and the GSTs.


glutathione S-transferase (GST) Venerupis philippinarum Mytilus galloprovincialis 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) molecular docking biomarker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bi X H, Qu W Y, Sheng G Y, Zhang W B, Mai B X, Chen D J, Yu L, Fu J M. 2006. Polybrominated diphenyl ethers in South China maternal and fetal blood and breast milk. Environ. Pollut., 144: 1 024–1 030.CrossRefGoogle Scholar
  2. Board P G, Coggan M, Chelvanayagam G, Easteal S, Jermiin L S, Schulte G K, Danley D E, Hoth L R, Griffor M C, Kamath A V, Rosner M H, Chrunyk B A, Perregaux D E, Gabel C A, Geoghegan K F, Pandit J. 2000. Identification, characterization, and crystal structure of the omega class glutathione transferases. J. Biol. Chem., 275: 24 798–24 806.CrossRefGoogle Scholar
  3. Boutet I, Tanguy A, Moraga D. 2004. Characterisation and expression of four mRNA sequences encoding glutathione S-transferases pi, mu, omega and sigma classes in the Pacific oyster Crassostrea gigas exposed to hydrocarbons and pesticides. Mar. Biol., 146: 53–64.CrossRefGoogle Scholar
  4. Chen L L, Mu C K, Zhao J M, Wang C L. 2011. Molecular cloning and characterization of two isoforms of cyclophilin A gene from Venerupis philippinarum. Fish Shellfish Immu., 31: 1 218–1 223.CrossRefGoogle Scholar
  5. Conrad S, James O, Reinette S. 2014. An analysis of historical Mussel Watch Programme data from the west coast of the Cape Peninsula, Cape Town. Mar. pollut. Bull., 87: 374–80.CrossRefGoogle Scholar
  6. Cunha I, Mangas-Ramirez E, Guilhermino L. 2007. Effects of copper and cadmium on cholinesterase and glutathione S-transferase activities of two marine gastropods (Monodonta lineata and Nucella lapillus). Comp. Biochem. Phys. C, 145: 648–657.Google Scholar
  7. Danielson U H, Mannervik B. 1985. Kinetic independence of the subunits of cytosolic glutathione transferase from the rat. Biochem. J., 231: 263–267.Google Scholar
  8. Darnerud P O. 2003. Toxic effects of brominated flame retardants in man and in wildlife. Environ. Int., 29: 841–853.CrossRefGoogle Scholar
  9. deGroot M J, Vermeulen N P E, Mullenders D L J, denKelder G M D O. 1996. A homology model for rat Mu class glutathione S-transferase 4-4. Chem. Res. Toxicol., 9: 28–40.CrossRefGoogle Scholar
  10. Enayati A A, Ranson H, Hemingway J. 2005. Insect glutathione transferases and insecticide resistance. Insect Mol. Biol., 14: 3–8.CrossRefGoogle Scholar
  11. Hayes J D, Flanagan J U, Jowsey I R. 2005. Glutathione transferases. Annu. Rev. Pharmacol., 45: 51–88.CrossRefGoogle Scholar
  12. Hites R A. 2004. Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ. Sci. Technol., 38: 945–956.CrossRefGoogle Scholar
  13. Hoarau P, Damiens G, Romeo M, Gnassia-Barelli M, Bebianno M J. 2006. Cloning and expression of a GST-π gene in Mytilus galloprovincialis. Attempt to use the GST-pi transcript as a biomarker of pollution. Comp. Biochem. Phys. C, 143: 196–203.Google Scholar
  14. Jin J, Liu W Z, Wang Y, Tang X Y. 2008. Levels and distribution of polybrominated diphenyl ethers in plant, shellfish and sediment samples from Laizhou Bay in China. Chemosphere, 71: 1 043–1 050.CrossRefGoogle Scholar
  15. Ketterer B, Coles B, Meyer D J. 1983. The role of glutathione in detoxication. Environ. Health Perspect., 49: 59–69.CrossRefGoogle Scholar
  16. Kim J H, Dahms H U, Rhee J S, Lee Y M, Lee J, Han K N, Lee J S. 2010. Expression profiles of seven glutathione S-transferase (GST) genes in cadmium-exposed river pufferfish (Takifugu obscurus). Comp. Biochem. Phys. C, 151: 99–106.Google Scholar
  17. Lee K W, Raisuddin S, Rhee J S, Hwang D S, Yu I T, Lee Y M, Park H G, Lee J S. 2008. Expression of glutathione S-transferase (GST) genes in the marine copepod Tigriopus japonicus exposed to trace metals. Aquat. Toxicol., 89: 158–166.CrossRefGoogle Scholar
  18. Lee Y M, Seo J S, Jung S O, Kim I C, Lee J S. 2006. Molecular cloning and characterization of theta-class glutathione S-transferase (GST-T) from the hermaphroditic fish Rivulus marmoratus and biochemical comparisons with alpha-class glutathione S-transferase (GST-A). Biochem. Bioph. Res. Co., 346: 1 053–1 061.CrossRefGoogle Scholar
  19. Li F, Xie Q, Li X H, Li N, Chi P, Chen J W, Wang Z J, Hao C. 2010. Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-beta: in vitro and in silico investigations. Environ. Health Perspect., 118: 602–606.CrossRefGoogle Scholar
  20. Liang L N, He B, Jiang G B, Chen D Y, Yao Z W. 2004. Evaluation of mollusks as biomonitors to investigate heavy metal contaminations along the Chinese Bohai Sea. Sci. Total Environ., 324: 105–113.CrossRefGoogle Scholar
  21. Liu X L, Zhang L B, You L P, Cong M, Zhao J M, Wu H F, Li C H, Liu D Y, Yu J B. 2011. Toxicological responses to acute mercury exposure for three species of Manila clam Ruditapes philippinarum by NMR-based metabolomics. Environ. Toxicol. Pharmacol., 31: 323–332.CrossRefGoogle Scholar
  22. Martinez L, Polikarpov I, Skaf MS. 2008. Only subtle protein conformational adaptations are required for ligand binding to thyroid hormone receptors: simulations using a novel multipoint steered molecular dynamics approach. J. Phy. Chem. B, 112: 10 741–10 751.CrossRefGoogle Scholar
  23. Mazdai A, Dodder N G, Abernathy M P, Hites R A, Bigsby R M. 2003. Polybrominated diphenyl ethers in maternal and fetal blood samples. Environ. Health Perspect., 111: 1 249–1 252.CrossRefGoogle Scholar
  24. Nair P M G, Choi J. 2011. Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat. Toxicol., 101: 550–560.CrossRefGoogle Scholar
  25. Pan X H, Tang J H, Li J, Guo Z G, Zhang G. 2010. Levels and distributions of PBDEs and PCBs in sediments of the Bohai Sea, North China. J. Environ. Monit., 12: 1 234–1 241.CrossRefGoogle Scholar
  26. Ramos J D A, Nge C, Wah L B, Yan C K. 2001. cDNA cloning and expression of Blo t 11, the Blomia tropicalis allergen homologous to paramyosin. Int. Arch. Allergy Immunol., 126: 286–293.CrossRefGoogle Scholar
  27. Rhee J S, Lee Y M, Hwang D S, Lee K W, Kim I C, Shin K H, Raisuddin S, Lee J S. 2007. Molecular cloning and characterization of omega class glutathione S-transferase (GST-O) from the polychaete Neanthes succinea: biochemical comparison with theta class glutathione S-transferase (GST-T). Comp. Biochem. Phys. C, 146: 471–477.Google Scholar
  28. Schecter A, Johnson-Welch S, Tung K C, Harris T R, Papke O, Rosen R. 2007. Polybrominated diphenyl ether (PBDE) levels in livers of US human fetuses and newborns. J. Toxicol. Env. Heal. A, 70: 1–6.CrossRefGoogle Scholar
  29. Shallaja M S, D’Silva C. 2003. Evaluation of impact of PAH on a tropical fish, Oreochromis mossambicus using multiple biomarkers. Chemosphere, 53: 835–841.CrossRefGoogle Scholar
  30. Singh S P, Coronella J A, Benes H, Cochrane B J, Zimniak P. 2001. Catalytic function of Drosophila melanogaster glutathione S-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products. Eur. J. Biochem., 268: 2 912–2 923.CrossRefGoogle Scholar
  31. Sippl W. 2002. Development of biologically active compounds by combining 3D QSAR and structure-based design methods. J. Comput. Aid. Mol. Des., 16: 825–830.CrossRefGoogle Scholar
  32. Srivastava S K, Hu X, Xia H, Awasthi S, Amin S, Singh S V. 1999. Metabolic fate of glutathione conjugate of benzo[a] pyrene-(7R,8S)-diol (9S,10R)-epoxide in human liver. Arch. Biochem. Biophys., 371: 340–344.CrossRefGoogle Scholar
  33. Stapleton H M, Kelly S M, Pei R, Letcher R J, Gunsch C. 2009. Metabolism of polybrominated diphenyl ethers (PBDEs) by human hepatocytes in vitro. Environ. Health Perspect., 117: 197–202.CrossRefGoogle Scholar
  34. Tang A H, Tu C P D. 1994. Biochemical-characterization of drosophila glutathione S-transferases D1 and D21. J. Biol. Chem., 269: 27 876–27 884.Google Scholar
  35. Tian S Y, Zhu L Y, Liu M. 2010. Bioaccumulation and distribution of polybrominated diphenyl ethers in marine species from Bohai Bay, China. Environ. Toxicol. Chem., 29: 2 278–2 285.CrossRefGoogle Scholar
  36. Wan Q, Whang I, Lee J S, Lee J. 2009. Novel omega glutathione S-transferases in disk abalone: characterization and protective roles against environmental stress. Comp. Biochem. Phys. C, 150: 558–568.Google Scholar
  37. Wan Q, Whang I, Lee J. 2008. Molecular cloning and characterization of three sigma glutathione S-transferases from disk abalone (Haliotis discus). Comp. Biochem. Phys. B, 151: 257–267.CrossRefGoogle Scholar
  38. Wan Y, Hu J Y, Zhang K, An L H. 2008. Trophodynamics of polybrominated diphenyl ethers in the marine food web of Bohai Bay, North China. Environ. Sci. Technol., 42: 1 078–1 083.CrossRefGoogle Scholar
  39. Won E J, Kim R O, Rhee J S, Park G S, Lee J, Shin K H, Lee Y M, Lee J S. 2011. Response of glutathione S-transferase (GST) genes to cadmium exposure in the marine pollution indicator worm, Perinereis nuntia. Comp. Biochem. Phys. C, 154: 82–92.Google Scholar
  40. Wu G S, Robertson D H, Brooks C L, Vieth M. 2003. Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. J. Comput. Chem., 24: 1 549–1 562.CrossRefGoogle Scholar
  41. Xue W L, Warshawsky D. 2005. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol. App. Pharm., 206: 73–93.CrossRefGoogle Scholar
  42. Zhang L B, Liu X L, Chen L L, You L P, Pei D, Cong M, Zhao J M, Li C H, Liu D Y, Yu J B, Wu H F. 2011b. Transcriptional regulation of selenium-dependent glutathione peroxidase from Venerupis philippinarum in response to pathogen and contaminants challenge. Fish Shellfish Imm., 31: 831–837.CrossRefGoogle Scholar
  43. Zhang L B, Qiu L H, Wu H F, Liu X L, You L P, Pei D, Chen L L, Wang Q, Zhao J M. 2012. Expression profiles of seven glutathione S-transferase (GST) genes from Venerupis philippinarum exposed to heavy metals and benzo[a] pyrene. Comp. Biochem. Phys. C, 155: 517–527.Google Scholar
  44. Zhang L, Liu X L, You L P, Zhou D, Wang Q, Li F, Cong M, Li L Z, Zhao J M, Liu D Y, Yu J B, Wu H F. 2011a. Benzo(a) pyrene-induced metabolic responses in Manila clam Ruditapes philippinarum by proton nuclear magnetic resonance (1 H NMR) based metabolomics. Environ. Toxicol. Pharm., 32: 218–225.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fei Li (李斐)
    • 1
  • Huifeng Wu (吴惠丰)
    • 1
  • Qing Wang (王清)
    • 1
  • Xuehua Li (李雪花)
    • 2
  • Jianmin Zhao (赵建民)
    • 1
  1. 1.Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of SciencesShandong Provincial Key Laboratory of Coastal Zone Environmental ProcessesYantaiChina
  2. 2.Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and TechnologyDalian University of TechnologyDalianChina

Personalised recommendations