Chinese Journal of Oceanology and Limnology

, Volume 33, Issue 5, pp 1245–1255 | Cite as

Climate modulation on sea surface height in China seas

  • Xiaoshuang Zhang (张晓爽)
  • Xidong Wang (王喜冬)
  • Yingzhi Cao (曹英志)
  • Lianxin Zhang (张连新)
  • Caixia Shao (邵彩霞)
  • Chunjian Sun (孙春健)
  • Xinrong Wu (吴新荣)
  • Hongli Fu (付红丽)
  • Lili Xuan (宣莉莉)
Remote sensing

Abstract

The climate modulation on the sea surface height (SSH) in China seas is investigated using a China Ocean Reanalysis (CORA) dataset from 1958–2008. The dataset is constructed by assimilating the temperature/salinity profiles derived from the satellite altimetry data and historical observational temperature/salinity profiles. Based on the Empirical Orthogonal Function (EOF), the CORA sea surface height anomaly (SSHa) is decomposed, and the interannual and decadal variability of the first three leading modes are analyzed. On the interannual timescale, the first principal component (PC1) is significant positively correlated with the El Niño/Southern Oscillation (ENSO). On the decadal timescale, North Pacific Gyre Oscillation (NPGO) has significant negative correlation with PC1 whereas Pacific Decadal Oscillation (PDO) is in phase with PC3. Analysis shows that the decadal variability of SSH is mainly modulated by the wind stress curl variability related to the NPGO and PDO. In addition, the effect of net heat flux associated to the NPGO and PDO on SSH is also investigated, with net heat flux variability in the Luzon strait and tropic Pacific found to influence the decadal variability of SSH.

Keyword

sea surface height El Niño/Southern Oscillation North Pacific Gyre Oscillation Pacific Decadal Oscillation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ceballos L I, Di Lorenzo E, Hoyos C D, Schnerder N, Taguchi B, Schneider N. 2009. North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. Journal of Climate, 22 (19): 5 163–5 174.CrossRefGoogle Scholar
  2. Cheng X H, Li L J, Du Y, Wang J, Huang R X. 2013. Mass-induced sea level change in the northwestern North Pacific and its contribution to total sea level change. Geophysical Research Letters, 40(15): 3 975–3 980.CrossRefGoogle Scholar
  3. Di Lorenzo E, Schneider N, Cobb K M et al. 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophysical Research Letters, 35 (8): L08607, http://dx.doi.org/10.1029/2007GL032838.Google Scholar
  4. Di Lorenzo E, Fiechter J, Schneider N et al. 2009. Nutrient and salinity decadal variations in the central and eastern North Pacific. Geophysical Research Letters, 36 (14): L14601, http://dx.doi.org/10.1029/2009GL038261.Google Scholar
  5. Di Lorenzo E, Cobb K M, Furtado J C et al. 2010. Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nature Geoscience, 3 (11): 762–765.CrossRefGoogle Scholar
  6. Graham N E. 1994. Decadal-scale climate variability in the tropical and North Pacific during the. 1970. and 1980s: observations and model results. Climate Dynamics, 10 (3): 135–162.CrossRefGoogle Scholar
  7. Gordon A L, Giulivi C F. 2004. Pacific decadal oscillation and sea level in the Japan/East Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 51 (5): 653–663.CrossRefGoogle Scholar
  8. Fang G H, Chen H Y, Wei Z X, Wang Y G, Wang X Y, Li C Y. 2006. Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade. Journal of Geophysical Research, 111 (C11), http://dx.doi.org/10.1029/2005JC003276.Google Scholar
  9. Han G Q, Huang W G. 2008. Pacific decadal oscillation and sea level variability in the Bohai, Yellow, and East China Seas. Journal of Physical Oceanography, 38 (12): 2772–2783.CrossRefGoogle Scholar
  10. Han G Q, Huang W G. 2009. Low-frequency sea-level variability in the South China Sea and its relationship to ENSO. Theoretical and Applied Climatology, 97 (1-2): 41–52.CrossRefGoogle Scholar
  11. Lavaniegos B E, Ohman M D. 2003. Long-term changes in pelagic tunicates of the California Current. Deep Sea Reserch Part II: Topical Studies in Oceanography, 50 (14-16): 2473–2498.CrossRefGoogle Scholar
  12. Lavaniegos B E, Ohman M D. 2007. Coherence of long-term variations of zooplankton in two sectors of the California Current System. Prog. Oceanogr., 75 (1): 42–69.CrossRefGoogle Scholar
  13. Li L P, Wang C, Zhang K M. 2013. Possible relationship between the interannual anomaly of the tropical Pacific sea surface height and summer precipitation in China. Journal of Tropical Meteorology, 19 (1): 16–27.Google Scholar
  14. Lynn R J, Collins C A, Mantyla A W et al. 1998. The state of the California Current, 1997–1998: transition to El Niño conditions. Cal COFI Rep., 39: 25–49.Google Scholar
  15. McGowan J A, Daniel R C, Dorman L M. 1998. Climate-ocean variability and ecosystem response in the Northeast Pacific. Science, 281(5374): 210–217.CrossRefGoogle Scholar
  16. Medhaug I, Furevik T. 2011. North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci., 7 (3): 389–404.CrossRefGoogle Scholar
  17. Mantua N J, Hare S R, Zhang Y, Wallace J M, Francis R C. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 (6): 1069–1079.CrossRefGoogle Scholar
  18. Nathan J M, Hare S R. 2002. The Pacific decadal oscillation. Journal of Oceanography, 58 (1): 35–44.CrossRefGoogle Scholar
  19. Quenouille M H. 1952. Associated Measurements. Butterworths Scientific Publications, London. 242p.Google Scholar
  20. Qiu B. 2003. Kuroshio extension variability and forcing of the Pacific decadal oscillations: responses and potential feedback. Journal of Physical Oceanography, 33 (12): 2465–2482.CrossRefGoogle Scholar
  21. Trenberth K E, Hurrell J. (1994. Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics, 9 (6): 303–319.CrossRefGoogle Scholar
  22. Wang C Z, Dong S F, Evan A T, Foltz G R, Lee S K. 2012. Multidecadal Covariability of North Atlantic Sea Surface Temperature, African Dust, Sahel Rainfall, and Atlantic Hurricanes. Journal of Climate, 25 (15): 5404–5405.CrossRefGoogle Scholar
  23. Wang J, Cheng X. 2013. Interannual/interdecadal variabilities of sea surface height in the South China Sea-correlation analysis with ENSO/PDO. American Geophysical Union, Fall meeting.Google Scholar
  24. Wu C R, Chang W J. (2005. Interannual variability of the South China Sea in a data assimilation model. Geophysical Reasearch Letters, 32: L17611, http://dx.doi.org/10.1029/2005GL023798CrossRefGoogle Scholar
  25. Zhang X B, Church J A. 2012. Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophysical Research Letters, 39 (21), http://dx.doi.org/10.1029/2012GL053240.Google Scholar
  26. Zhang Y C, Zhang L F, Wang Y G. 2010. Interannual sea level variability in the North Pacific Ocean and its mechanisms. Chinese Journal of Geophysics, 53 (1): 54–63.CrossRefGoogle Scholar
  27. Zhang Y C, Zhang L F, Lü Q P. 2011. Dynamic mechanism of interannual sea surface height variability in the north Pacific subtropical gyre. Advances in Atmospheric Sciences, 28 (1): 158–168.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xiaoshuang Zhang (张晓爽)
    • 1
  • Xidong Wang (王喜冬)
    • 1
  • Yingzhi Cao (曹英志)
    • 1
  • Lianxin Zhang (张连新)
    • 1
    • 2
  • Caixia Shao (邵彩霞)
    • 1
    • 3
  • Chunjian Sun (孙春健)
    • 1
  • Xinrong Wu (吴新荣)
    • 1
  • Hongli Fu (付红丽)
    • 1
  • Lili Xuan (宣莉莉)
    • 1
  1. 1.Key Laboratory of Marine Environmental Information Technology, SOANational Marine Data and Information ServiceTianjinChina
  2. 2.College of Physical and Environmental OceanographyOcean University of ChinaQingdaoChina
  3. 3.National University of Defense TechnologyChangshaChina

Personalised recommendations