Advertisement

Chinese Journal of Oceanology and Limnology

, Volume 33, Issue 6, pp 1354–1361 | Cite as

Do copepods inhabit hypersaline waters worldwide? A short review and discussion

  • Elena V. AnufriievaEmail author
Article

Abstract

A small number of copepod species have adapted to an existence in the extreme habitat of hypersaline water. 13 copepod species have been recorded in the hypersaline waters of Crimea (the largest peninsula in the Black Sea with over 50 hypersaline lakes). Summarizing our own and literature data, the author concludes that the Crimean extreme environment is not an exception: copepod species dwell in hypersaline waters worldwide. There are at least 26 copepod species around the world living at salinity above 100; among them 12 species are found at salinity higher than 200. In the Crimea Cletocamptus retrogressus is found at salinity 360×10-3 (with a density of 1 320 individuals/m3) and Arctodiaptomus salinus at salinity 300×10-3 (with a density of 343 individuals/m3). Those species are probably the most halotolerant copepod species in the world. High halotolerance of osmoconforming copepods may be explained by exoosmolyte consumption, mainly with food. High tolerance to many factors in adults, availability of resting stages, and an opportunity of long-distance transportation of resting stages by birds and/or winds are responsible for the wide geographic distribution of these halophilic copepods.

Keywords

Copepoda halotolerance exoosmolytes biogeography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aladin N V, Plotnikov I S. 2008. Modern fauna of residual water bodies formed on the place of the former Aral Sea. Proc. Zool. Inst. RAS, 312 (1-2): 145–154. (in Russian)Google Scholar
  2. Alonso M. 1990. Anostraca, Cladocera and Copepoda of Spanish saline lakes. Hydrobiologia, 197 (1): 221–231, http://dx.doi.org/10.1007/BF00026952.CrossRefGoogle Scholar
  3. Alonso M. 2010. Branchiopoda and Copepoda (Crustacea) in Mongolian saline lakes. Mongolian J. Biol. Sci., 8 (1): 9–16.Google Scholar
  4. Amarouayache M, Derbal F, Kara M H. 2012. Note on the carcinological fauna associated with Artemia salina (Branchiopoda, Anostraca) from Sebkha Ez-Zemoul (northeast Algeria). Crustaceana, 85 (2): 129–137, http://dx.doi.org/10.1163/156854012X623728.CrossRefGoogle Scholar
  5. Andrew T E, Cabrera S, Montecino V. 1989. Diurnal changes in zooplankton respiration rates and the phytoplankton activity in two Chilean lakes. Hydrobiologia, 175 (2):121–135, http://dx.doi.org/10.1007/BF00765123.CrossRefGoogle Scholar
  6. Anufriieva E V, Holynska M, Shadrin N V. 2014. Current invasions of Asian Cyclopid species (Copepoda: Cyclopidae) in Crimea, with taxonomical and zoogeographical remarks on the hypersaline and freshwater fauna. Annales Zoologici, 64 (1): 109–130, http://dx.doi.org/10.3161/000345414X680636.CrossRefGoogle Scholar
  7. Anufriieva E V, Shadrin N V. 2012. Crustacean diversity in hypersaline Chersonessus Lake (Crimea). Opt. Protect. Ecosyst., 7: 55–61. (in Russian)Google Scholar
  8. Anufriieva E V, Shadrin N V. 2014a. Arctodiaptomus salinus (Daday 1885. (Calanoida, Copepoda) in saline water bodies of the Crimea. Morskoi Ecologicheskii Zhurnal, 13 (3): 5–11. (in Russian)Google Scholar
  9. Anufriieva E V, Shadrin N V. 2014b. Resting stages of crustaceans in the Crimean hypersaline lakes (Ukraine) and their ecological role. Acta Geol. Sin., 88 (Suppl. 1): 46–49, http://dx.doi.org/10.1111/1755-6724.12266_3.CrossRefGoogle Scholar
  10. Anufriieva E V. 2014. Free-living Cyclopidae (Copepoda, Cyclopoida) in saline and hypersaline water bodies of the Crimea: new findings. Morskoi Ecologicheskii Zhurnal, 13 (2): 24–30. (in Russian)Google Scholar
  11. Balushkina E V, Golubkov S M, Golubkov M S, Litvinchuk L F, Shadrin N V. 2009. Effect of abiotic and biotic factors on the structural and functional organization of the saline lake ecosystems. Zhurnal Obshchei Biologii, 70 (6):504–514. (in Russian)Google Scholar
  12. Bayly I A E, Boxshall G A. 2009. An all-conquering ecological journey: from the sea, calanoid copepods mastered brackish, fresh, and athalassic saline waters. Hydrobiologia, 630 (1): 39–47, http://dx.doi.org/10.007/s10750-009-9797-6.CrossRefGoogle Scholar
  13. Bayly I A E. 1967. The fauna and chemical composition of some athalassic saline waters in New Zealand. New Zealand J. Mar. Freshw. Res., 1 (2): 105–117, http://dx.doi.org/10.1080/00288330.1967.9515197.CrossRefGoogle Scholar
  14. Bayly I A E. 1970. Further studies on some saline lakes of south-east Australia. Austr. J. Mar. Freshw. Res., 21 (2): 117–130.CrossRefGoogle Scholar
  15. Bayly I A E. 1972. Salinity tolerance and osmotic behavior of animals in athalassic saline and marine hypersaline waters. Ann. Rev. Ecol. Syst., 3 (1): 233–268, http://www. jstor.org/stable/2096848.CrossRefGoogle Scholar
  16. Beadle L C. 1943. An ecological survey of some inland saline waters of Algeria. J. Linnean Soc. London Zool., 41 (278): 218–242, http://dx.doi.org/10.1111/j.1096-3642.1943.tb01698.x.CrossRefGoogle Scholar
  17. Belmonte G, Moscatello S, Batogova E A, Pavlovskaya T, Shadrin N V, Litvinchuk L F. 2012. Fauna of hypersaline lakes of the Crimea (Ukraine). Thalassia Salentina, 34: 11–24, http://dx.doi.org/10.1285/i15910725v34p11.Google Scholar
  18. Ben-Amotz A, Sussman I, Avron M. 1982. Glycerol production by Dunaliella. Experientia, 38 (1): 49–52, http://dx.doi.org/10.1007/BF01944527.CrossRefGoogle Scholar
  19. Boxshall G. 2009. Freshwater Animal Diversity Assessment (FADA) Project. Crustacea-Copepoda checklist. http://fada.biodiversity.be/CheckLists/Crustacea-Copepoda.pdf.Google Scholar
  20. Britton R H, Johnson A R. 1987. An ecological account of a Mediterranean salina: the Salin de Giraud, Camargue (S. France). Biol. Conserv., 42 (3): 185–230, http://dx.doi. org/10.1016/0006-3207(87)90133-9.CrossRefGoogle Scholar
  21. Brucet S, Boix D, Gascón S, Sala J, Quintana X D, Badosa A, Søndergaard M, Lauridsen T L, Jeppesen E. 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography, 32 (4): 692–702, http://dx.doi.org/10.1111/j.1600-0587.2009.05823.x.CrossRefGoogle Scholar
  22. Burton R S. 1991. Regulation of proline synthesis during osmotic stress in the copepod Tigriopus californicus. J. Exp. Zool., 259 (2): 166–173, http://dx.doi.org/10.1002/jez.1402590204.CrossRefGoogle Scholar
  23. Carrasco N K, Perissinotto R. 2012. Development of a halotolerant community in the St. Lucia Estuary (South Africa) during a hypersaline phase. PloS One, 7 (1): e29927, http://dx.doi.org/10.1371/journal.pone.0029927.CrossRefGoogle Scholar
  24. Chen H, Jiang J G. 2009. Osmotic responses of Dunaliella to the changes of salinity. J. Cell. Physiol., 219 (2): 251–258, http://dx.doi.org/10.1002/jcp.21715.CrossRefGoogle Scholar
  25. De Miranda M A, Durante L, Serra E. 2000. Zoocenoses dans les bassins de premiére evaporation dans une saline de la Sardaigne. Mediterránea: Serie de Estudios Biológicos, Época II, 17: 45–50, http://hdl.handle.net/10045/6546.Google Scholar
  26. De Vooys C G N, Geenevasen J A J. 2002. Biosynthesis and role in osmoregulation of glycine-betaine in the Mediterranean mussel Mytilus galloprovincialis LMK. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 132 (2): 409–414, http://dx.doi.org/10.1016/S1096-4959(02)00052-0.CrossRefGoogle Scholar
  27. Dumont H J, Decraemer W. 1977. On the continental copepod fauna of Morocco. Hydrobiologia, 52 (2-3): 257–278, http://dx.doi.org/10.1007/BF00036451.CrossRefGoogle Scholar
  28. Dussart B H, Defaye D. 2006. World directory of Crustacea Copepoda of inland waters II-Cyclopiformes. Backhuys Publisher, Leiden. 354p.Google Scholar
  29. Fenchel T. 1988. Marine plankton food chains. Ann. Rev. Ecol. Syst., 19 (1): 19–38, http://www.jstor.org/stable/2097146.CrossRefGoogle Scholar
  30. Frangoulis C, Christou E D, Hecq J H. 2004. Comparison of marine copepod outfluxes: nature, rate, fate and role in the carbon and nitrogen cycles. Adv. Mar. Biol., 47: 253–309, http://dx.doi.org/10.1016/S0065-2881(04)47004-7.CrossRefGoogle Scholar
  31. Frisch D, Green A J, Figuerola J. 2007. High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquat. Sci., 69 (4): 568–574, http://dx.doi.org/10.1007/s00027-007-0915-0.CrossRefGoogle Scholar
  32. Geddes N C. 1976. Seasonal fauna of some ephemeral saline waters in westren Victoria with particular reference to Parartemia zietziana Sayce (Crustacea: Anostraca). Aust. J. Mar. Freshw. Res., 27 (1): 1–22, http://dx.doi.org/10. 1071/MF9760001.CrossRefGoogle Scholar
  33. Ginatullina E N, Khodjaeva G. 2012. Zooplankton of small drainage lakes in lower part of Amudaria under increasing salinity. Scientific Information Center of ICWC, Almaty, Kazakhstan. p.173–175. (in Russian)Google Scholar
  34. Goolish E M, Burton R S. 1989. Energetics of osmoregulation in an intertidal copepod: effects of anoxia and lipid reserves on the pattern of free amino accumulation. Funct. Ecol., 3 (1): 81–89, http://www.jstor.org/stable/2389678.CrossRefGoogle Scholar
  35. Grant W D. 2004. Life at low water activity. Phil. Trans. R. Soc. London B: Biol. Sci., 359 (1448): 1249–1267, http://dx.doi.org/10.1098/rstb.2004.1502.CrossRefGoogle Scholar
  36. Gurney R. 1933. British Freshwater Copepoda, 3. The Ray Society, London. 384p.Google Scholar
  37. Hammer U T, Hurlbert S H. 1992. Is the absence of Artemia determined by the presence of predators or by lower salinity in some saline waters? In: Roberts R D, Bothwell M L eds. Aquatic Ecosystems in Semi-Arid Regions: Implications for Resource Management. Nat. Hydrol. Res. Inst. Symposium Series 7, Environment Canada, Saskatoon. p.91–102.Google Scholar
  38. Hammer U T. 1986. Saline Lake Ecosystems of the World. Springer, Dordrecht. 616p.Google Scholar
  39. Hammer U T. 1993. Zooplankton distribution and abundance in saline lakes of Alberta and Saskatchewan, Canada. Int. J. Salt Lake Res., 2 (2): 111–132, http://dx.doi.org/10.1007/BF02905904.CrossRefGoogle Scholar
  40. He Z H, Qin J G, Wang H Q, Wang Z Y, Xia X. 1989. Studies on the saline and hypersaline zooplanktons from Jinnan and Yinchuan regions. Acta Hydrobiol. Sin., 13 (1): 24–37. (in Chinese with English abstract)Google Scholar
  41. Imhoff J F. 1986. Survival strategies of microorganisms in extreme saline environments. A dv. S pace Res., 6 (12):299–306, http://dx.doi.org/10.1016/0273-1177(86)90098-0.Google Scholar
  42. Jones D A, Price A R G, Hughs R N. 1978. Ecology of the high saline lagoons Dawhat as Sayh, Arabian Gulf, Saudi Arabia. Estuar. Coast. Mar. Sci., 6 (3): 253–262, http://dx.doi.org/10.1016/0302-3524(78)90014-2.CrossRefGoogle Scholar
  43. Khlebovich V V, Aladin N V. 2010. The salinity factor in animal life. Herald Russ. Acad. Sci., 80 (3): 299–304, http://dx.doi.org/10.1134/S1019331610030172.CrossRefGoogle Scholar
  44. Kolesnikova E A, Mazlumyan S A, Shadrin N V. 2008). Seasonal dynamics of meiobenthos fauna from a salt lake of the Crimea. In: The Firth International Conference of Environmental Micropaleontology, Microbiology and Meiobenthology (EMMM). Chennai, India. p.155–158.Google Scholar
  45. Krupa E G. 2010. Zooplankton Structure of Different Ecological Type’S Waterbodies and Rivers of Kazakhstan. Dr. Sc. Thesis, Institute of Zoology, Almaty, Kazakhstan. 200p. (in Russian)Google Scholar
  46. Lindley L C, Phelps R P, Davis D A, Cummins K A. 2011. Salinity acclimation and free amino acid enrichment of copepod nauplii for first-feeding of larval marine fish. Aquaculture, 318 (3-4): 402–406, http://dx.doi.org/10. 1016/j.aquaculture.2011.05.050.CrossRefGoogle Scholar
  47. Litvinenko L I, Litvinenko A I, Boiko E G. 2009. Brine shrimp Artemia in Western Siberia Lakes. Nauka, Novosibirsk. 304p. (in Russian)Google Scholar
  48. Mageed A A A. 1998. Distribution and salinity ranges of zooplankton organisms at El-Fayoum depression (El- Fayoum-Egypt). Egypt. J. Aquat. Biol. Fish., 2: 51–71.Google Scholar
  49. Mageed A A A. 2006. Spatio-temporal variations of zooplankton community in the hypersaline lagoon of Bardawil, North Sinai, Egypt. Egypt. J. Aquat. Res., 32 (1): 168–183, http://hdl.handle.net/1834/1456.Google Scholar
  50. Marten G G, Nguyen M, Ngo G. 2000. Copepod predation on Anopheles quadrimaculatus larvae in rice fields. J. Vector Ecol., 25 (1): 1–6.Google Scholar
  51. Monchenko V I. 2003. Free-Living Cyclopoid Copepods of Ponto-Caspian Basin. Naukova Dumka, Kyiv. 350p. (in Russian)Google Scholar
  52. Moore J E. 1952. The Entomostraca of southern Saskatchewan. Canad. J. Zool., 30 (6): 410–450, http://dx.doi.org/10.1139/z52-036.CrossRefGoogle Scholar
  53. Moscatello S, Belmonte G. 2009. Egg banks in hypersaline lakes of the South-East Europe. Sal. Syst., 5 (1): 3, http://dx.doi.org/10.1186/1746-1448-5-3.CrossRefGoogle Scholar
  54. Oren A. 2011. Thermodynamic limits to microbial life at high salt concentrations. Environ. Microbiol., 13 (8): 1908–1923, http://dx.doi.org/10.1111/j.1462-2920.2010.02365.x.CrossRefGoogle Scholar
  55. Patrick M L, Bradley T J. 2000. Regulation of compatible solute accumulation in larvae of the mosquito Culex tarsalis: osmolarity versus salinity. J. Exp. Biol., 203: 831–839.Google Scholar
  56. Pierce S K, Edwards S C, Mazzocchi P H, Klingler L J, Warren M K. 1984. Proline betaine: a unique osmolyte in an extremely euryhaline osmoconformer. Biol. Bull., 167 (2): 495–500.CrossRefGoogle Scholar
  57. Pinder A M, Halse S A, McRae J M, Shiel R J. 2005. Occurrence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity. Hydrobiologia, 543 (1): 1–24, http://dx.doi.org/10.1007/s10750-004-5712-3.CrossRefGoogle Scholar
  58. Por F D. 1980. A classification of hypersaline waters, based on trophic criteria. Mar. Ecol., 1 (2): 121–131, http://dx.doi. org/10.1111/j.1439-0485.1980.tb00214.x.CrossRefGoogle Scholar
  59. Radzikowski J. 2013. Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J. Plankton Res., 35 (4): 707–723, http://dx. doi.org/10.1093/plankt/fbt032.CrossRefGoogle Scholar
  60. Ramdani M, Elkhiati N, Flower R J, Birks H H, Kraïem M M, Fathi A A, Patrick S T. 2001. Open water zooplankton communities in North African wetland lakes: the CASSARINA project. Aquat. Ecol., 35 (3-4): 319–333, http://dx.doi.org/10.1023/A:1011926310469.CrossRefGoogle Scholar
  61. Reid J W, Reed E B. 1994. First records of two Neotropical species of Mesocyclops (Copepoda) from Yukon Territory: Cases of passive dispersal? Arctic, 47 (1): 80–87, http://www.jstor.org/stable/40511533.CrossRefGoogle Scholar
  62. Rokneddine A, Chentoufi M. 2004. Study of salinity and temperature tolerance limits regarding four crustacean species in a temporary salt water swamp (Lake Zima, Morocco). Animal Biol., 54 (3): 237–253, http://dx.doi. org/10.1163/1570756042484719.CrossRefGoogle Scholar
  63. Samraoui B. 2002. Branchiopoda (Ctenopoda and Anomopoda) and Copepoda from eastern Numidia, Algeria. Hydrobiologia, 470 (1-3): 173–179, http://dx.doi.org/10.1023/A:1015640525662.CrossRefGoogle Scholar
  64. Seibel B A, Walsh P J. 2002. Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J. Exp. Biol., 205 (3): 297–306.Google Scholar
  65. Semenova L A, Aleksyuk V A, Dergach S M, Leleko T I. 2000. Species diversity of zooplankton in the water bodies of the Ob North. Vestnik ekolgii, Lesovedenia I Landshavtoveniya, 1: 127–134. (in Russian)Google Scholar
  66. Senicheva M I, Gubelit Y, Prazukin A V, Shadrin N V. 2008). Phytoplankton of the Crimean hypersaline lakes. In: Tokarev Yu N, Finenko Z Z, Shadrin N V eds. The Black Sea Microalgae: Problems of Biodiversity Preservation and Biotechnological Usage. ECOSI- Gidrofizika, Sevastopol. p.5–18. (in Russian)Google Scholar
  67. Senicheva M I. 2005. Green alga Dunaliella salina in the natural conditions. Ecologiya Morya, 67: 61–63. (in Russian)Google Scholar
  68. Shadrin N V, Anufriieva E V. 2013. Dependence of Arctodiaptomus salinus (Calanoida, Copepoda) halotolerance on exoosmolytes: new data and a hypothesis. J. Medit. Ecol., 12: 21–26.Google Scholar
  69. Shadrin N V. 2009. The Crimean hypersaline lakes: towards development of scientific basis of integrated sustainable management. Wuhan, China. http://wldb.ilec.or.jp/data/ilec/WLC13_Papers/S12/s12-1.pdf.Google Scholar
  70. Shadrin N V. 2012. Crustaceans in Hypersaline water bodies: the specificity of the existence and adaptation. In: Korovchinsky N M, Zhdanova S M, Krylov A V eds. Actual Problems of Crustacean Study in Continental Waters. OOO Kostroma Printing House, Kostroma. p.316–319. (in Russian)Google Scholar
  71. Shen J R, Chen Y, Song D X. 1963. Notes on the Copepoda fauna of Chinghai province, China. Acta Zool. Sin., 15 (2): 263–272. (in Chinese with English abstract)Google Scholar
  72. Stuge T S, Matmuratov C A, Krupa E G, Akberdina G Z. 2003. Peculiarities of the plankton shrimps development in waterbodies of Semipalatinsk test range zone in 2002. Vestnik Natsional’nogo Yadernogo Tsentra Respubliki Kazakhstan, 3: 141–149. (in Russian)Google Scholar
  73. Svetlichny L, Hubareva E, Khanaychenko A. 2012. Calanipeda aquaedulcis and Arctodiaptomus salinus are exceptionally euryhaline osmoconformers: evidence from mortality, oxygen consumption, and mass density patterns. Mar. Ecol. Progr. Ser., 470: 15–29, http://dx.doi.org/10.3354/meps09907.CrossRefGoogle Scholar
  74. Tiffany M A, Swan B K, Watts J M, Hurlbert S H. 2002. Metazooplankton dynamics in the Salton Sea, California, 1997-1999. Hydrobiologia, 473 (1-3): 103–120, http://dx. doi.org/10.1023/A:1016529617757.CrossRefGoogle Scholar
  75. Timms B V. 1987. Limnology of Lake Buchanan, a tropical saline lake and associated pools, of North Queensland. Austr. J. Mar. Freshw. Res., 38 (6): 877–884, http://dx.doi.org/10.1071/MF9870877.Google Scholar
  76. Timms B V. 1993. Saline lakes of the Paroo, inland New South Wales, Australia. Hydrobiologia, 267 (1-3): 269–289, http://dx.doi.org/10.1007%2FBF00018808.CrossRefGoogle Scholar
  77. Timms B V. 2001. A study of the Werewilka Inlet of the saline Lake Wyara, Australia-a harbour of biodiversity for a sea of simplicity. Hydrobiologia, 466 (1-3): 245–254, http://dx.doi.org/10.1023/A:1014597131801.CrossRefGoogle Scholar
  78. Timms B V. 2009. Study of the saline lakes of the Esperance Hinterland, Western Australia, with special reference to the roles of acidity and episodicity. Nat. Res. Environ. Res. Environ. Iss., 15 (1): 215–225, http://digitalcommons.usu.edu/nrei/vol15/iss1/44.Google Scholar
  79. Tseeb Y Y. 1958. Composition and quantitative development of microbenthal fauna in the downstream of the Dnieper and in the bodies of water of the Crimea. Zoologicheskii Zhurnal, 371: 3–12. (in Russian)Google Scholar
  80. Van Der Meeren T, Olsen R E, Hamre K, Fyhn H J. 2008. Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture, 274 (2-4): 375–397, http://dx.doi.org/10.1016/j.aquaculture.2007.11.041.CrossRefGoogle Scholar
  81. Vesnina L V. 2003. Structure and Functioning of Zooplankton Communities of Lake Ecosystems in South Part of West Siberia. Dr. Sc. Thesis, Altai University, Barnaul, Russia. 210p. (in Russian)Google Scholar
  82. Walter T C, Boxshall G. 2015. World of Copepods. http://www.marinespecies.org/copepoda/aphia.php?p=taxdetails&id=349512. Accessed on 2015-06-17.Google Scholar
  83. Williams W D, Kokkinn M J. 1988. The biogeographical affinities of the fauna in episodically filled salt lakes: a study of Lake Eyre South, Australia. Hydrobiologia, 158 (1): 227–236, http://dx.doi.org/10.1007/BF00026280.CrossRefGoogle Scholar
  84. Yancey P H. 2001. Water stress, osmolytes and proteins. Am. Zool., 41 (4): 699–709, http://dx.doi.org/10.1093/icb/41.4.699.Google Scholar
  85. Yermolayeva N I. 2012. Seasonal changes in Cladocera community in lakes of different salinity in Barabinsk- Kulunda lake province (South of Western Siberia). In: Korovchinsky N M, Zhdanova S M, Krylov A V eds. Actual Problems of Crustacean Study in Continental Waters. OOO Kostroma Printing House, Kostroma. p.187–189. (in Russian)Google Scholar
  86. Zagorodnyaya Y A, Batogova E A, Shadrin N V. 2008. Longterm transformation of zooplankton in the hypersaline lake Bakalskoe (Crimea) under salinity fluctuations. Morskoi Ecologicheskii Zhurnal, 7: 41–50. (in Russian)Google Scholar
  87. Zavarzin G A. 2003. Lectures on Natural Historical Microbiology. Nauka, Moscow. 348p. (in Russian)Google Scholar
  88. Zernov S A. 1949. General Hydrobiology. Akad. Nauk USSR, Moscow. 587p. (in Russian)Google Scholar
  89. Zhao W, He Z H. 1999. Biological and ecological features of inland saline waters in North Hebei, China. Int. J. Salt Lake Res., 8 (3): 267–285, http://dx.doi.org/10.1023/A:1009091216842.Google Scholar
  90. Zhao W, Zheng M P, Xu X Z, Liu X F, Guo G L, He Z H. 2005. Biological and ecological features of saline lakes in northern Tibet, China. Hydrobiologia, 541 (1): 189–203, http://dx.doi.org/10.1007/s10750-004-5707-0.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.MLR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral ResourcesCAGSBeijingChina
  2. 2.Institute of Biology of the Southern SeasSevastopolRussia

Personalised recommendations