Advertisement

Chinese Journal of Oceanology and Limnology

, Volume 31, Issue 4, pp 860–866 | Cite as

Henry’s law constant for phosphine in seawater: determination and assessment of influencing factors

  • Mei Fu (付梅)
  • Zhiming Yu (俞志明)
  • Guangyuan Lu (卢光远)
  • Xiuxian Song (宋秀贤)Email author
Chemistry

Abstract

The Henry’s Law constant (k) for phosphine in seawater was determined by multiple phase equilibration combined with headspace gas chromatography. The effects of pH, temperature, and salinity on k were studied. The k value for phosphine in natural seawater was 6.415 at room temperature (approximately 23°C). This value increases with increases in temperature and salinity, but no obvious change was observed at different pH levels. At the same temperature, there was no significant difference between the k for phosphine in natural seawater and that in artificial seawater. This implies that temperature and salinity are major determining factors for k in marine environment. Double linear regression with Henry’s Law constants for phosphine as a function of temperature and salinity confirmed our observations. These results provide a basis for the measurement of trace phosphine concentrations in seawater, and will be helpful for future research on the status of phosphine in the oceanic biogeochemical cycle of phosphorus.

Keyword

phosphine Henry’s Law constant seawater influencing factors multiple phase equilibration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Devai I, DeLaune R D, Devai G, Patrick W H, Czegeny I. 1999. Phosphine production potential of various wastewater and sewage sludge sources. Anal. Lett., 32(7): 1 447–1 457.CrossRefGoogle Scholar
  2. Devai I, Delaune R D. 1995. Evidence for phosphine production and emission from louisiana and florida marsh soils. Org. Geochem., 23(3): 277–279.CrossRefGoogle Scholar
  3. Devai I, Felfoldy L, Wittner I, Plosz S. 1988. Detection of phosphine-new aspects of the phosphorus cycle in the hydrosphere. Nature, 333(6171): 343–345.CrossRefGoogle Scholar
  4. Dewulf J, Drijvers D, Vanlangenhove H. 1995. Measurement of henrys law constant as function of temperature and salinity for the low-temperature range. Atmos. Environ., 29(3): 323–331.CrossRefGoogle Scholar
  5. Elkins J W. 1980. Determination of dissolved nitrous oxide in aquatic systems by gas chromatography using electroncapture detection and multiple phase equilibration. Analytical Chemistry, 52(2): 263–267.CrossRefGoogle Scholar
  6. Feng Z H, Song X X, Yu Z M. 2008a. Distribution characteristics of matrix-bound phosphine along the coast of China and possible environmental controls. Chemosphere, 73(4): 519–525.CrossRefGoogle Scholar
  7. Feng Z H, Song X X, Yu Z M. 2008b. Seasonal and spatial distribution of matrix-bound phosphine and its relationship with the environment in the Changjiang River Estuary, China. Marine Pollution Bulletin, 56(9): 1 630–1 636.CrossRefGoogle Scholar
  8. Frank R, Rippen G. 1987. Verhalten von phosphin in der Atmosphäre (Fate of phosphine in the atmosphere). Lebensmitteltechnik, 17: 409–411.Google Scholar
  9. Gassmann G, van Beusekom J E E, Glindemann D. 1996. Offshore atmospheric phosphine. Naturwissenschaften, 83(3): 129–131.CrossRefGoogle Scholar
  10. Gassmann G. 1994. Phosphine in the fluvial and marine hydrosphere. Mar. Chem., 45(3): 197–205.CrossRefGoogle Scholar
  11. Geng J J, Niu X J, Wang X R, Edwards M, Glindemann D. 2010. The presence of trace phosphine in Lake Taihu water. Int. J. Environ. Anal. Chem., 90(9): 737–746.CrossRefGoogle Scholar
  12. Glindemann D, Bergmann A, Stottmeister U, Gassmann G. 1996. Phosphine in the lower terrestrial troposphere. Naturwissenschaften, 83(3): 131–133.CrossRefGoogle Scholar
  13. Glindemann D, Edwards M, Kuschk P. 2003. Phosphine gas in the upper troposphere. Atmos. Environ., 37(18): 2 429–2 433.CrossRefGoogle Scholar
  14. Glindemann D, Eismann F, Bergmann A, Kuschk P, Stottmeister U. 1998. Phosphine by bio-corrosion of phosphide-rich iron. Environ. Sci. Pollut. Res., 5(2): 71–74.CrossRefGoogle Scholar
  15. Hanrahan G, Salmassi T M, Khachikian C S, Foster K L. 2005. Reduced inorganic phosphorus in the natural environment: significance, speciation and determination. Talanta, 66(2): 435–444.CrossRefGoogle Scholar
  16. Lau K, Rogers T N, Chesney D J. 2010. Measuring the aqueous Henry’s Law constant at elevated temperatures using an extended EPICS technique. J. Chem. Eng. Data, 55(11): 5 144–5 148.CrossRefGoogle Scholar
  17. Li J B, Zhang G L, Zhang J, Liu S M, Ren J L, Hou Z X. 2009. Phosphine in the lower atmosphere of Qingdao-a coastal site of the Yellow Sea (China). Water Air and Soil Pollution, 204(1–4): 117–131.CrossRefGoogle Scholar
  18. Liu J A, Yahui C H Z, Kuschk P, Eismann F, Glindemann D. 1999. Phosphine in the urban air of Beijing and its possible sources. Water Air and Soil Pollution, 116(3–4): 597–604.Google Scholar
  19. McAullif C. 1971. GC determination of solutes by multiple phase equilibration. Chemical Technology, (Jan): 46–51.Google Scholar
  20. Mohebbi V, Naderifar A, Behbahani R M, Moshfeghian M. 2012. Determination of Henry’s law constant of light hydrocarbon gases at low temperatures. J. Chem. Thermodyn., 51: 8–11.CrossRefGoogle Scholar
  21. Niu X J, Geng J J, Wang X R, Wang C H, Gu X H, Edwards M, Glindemann D. 2004. Temporal and spatial distributions of phosphine in Taihu Lake, China. Science of the Total Environment, 323(1–3): 169–178.CrossRefGoogle Scholar
  22. Rice C P, Chernyak S M, McConnell L L. 1997. Henry’s law constants for pesticides measured as a function of temperature and salinity. J. Agr. Food Chem., 45(6): 2 291–2 298.CrossRefGoogle Scholar
  23. Roels J, Verstraete W. 2004. Occurrence and origin of phosphine in landfill gas. Science of the Total Environment, 327(1–3): 185–196.CrossRefGoogle Scholar
  24. Rolf S. 1999. Compilation of Henry’s Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry(Version 3). http://www.mpchmainz.mpg.de/-sander/res/henry.html. Accessed on 2011-6-28.Google Scholar
  25. Ruiz-Bevia F, Fernandez-Torres M J. 2010. Determining the Henry’s Law constants of THMs in seawater by means of purge-and-trap gas chromatography (PT-GC): the influence of seawater as sample matrix. Anal. Sci., 26(6): 723–726.CrossRefGoogle Scholar
  26. Song X X, Morrison R J, Feng Z H, Liu D Y, Harrison J J, Yu Z M. 2011. Matrix-bound phosphine in sediments from Lake Illawarra, New South Wales, Australia. Marine Pollution Bulletin, 62(8): 1 744–1 750.CrossRefGoogle Scholar
  27. Wang Y H, Wang B Q. 2001. Determination of Henry’s law constants for dimethyl sulfide in seawater. Chinese Journal of Chromatography, 19(4): 358–360. (in Chinese with English abstract)Google Scholar
  28. Wilhelm E, Battino R, Wilcock R J. 1977. Low-pressure solubility of gases in liquid water. Chemical Reviews, 77(2): 219–262.CrossRefGoogle Scholar
  29. Yu Z M, Song X X. 2003. Matrix-bound phosphine: a new form of phosphorus found in sediment of Jiaozhou Bay. Chinese Science Bulletin, 48(1): 31–35.Google Scholar
  30. Zhu R B, Glindemann D, Kong D M, Sun L G, Geng J J, Wang X R. 2007. Phosphine in the marine atmosphere along a hemispheric course from China to Antarctica. Atmos. Environ., 41(7): 1 567–1 573.CrossRefGoogle Scholar
  31. Zhu R B, Kong D M, Sun L G, Geng J J, Wang X R, Glindemann D. 2006. Tropospheric phosphine and its sources in coastal Antarctica. Environ. Sci. Technol., 40(24): 7 656–7 661.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mei Fu (付梅)
    • 1
    • 2
  • Zhiming Yu (俞志明)
    • 1
  • Guangyuan Lu (卢光远)
    • 1
    • 2
  • Xiuxian Song (宋秀贤)
    • 1
    Email author
  1. 1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations