Advertisement

Pigment characterization for the 2011 bloom in Qinhuangdao implicated “brown tide” events in China

  • Fanzhou Kong (孔凡洲)
  • Rencheng Yu (于仁成)
  • Qingchun Zhang (张清春)
  • Tian Yan (颜天)
  • Mingjiang Zhou (周名江)
Biology

Abstract

A large-scale bloom occurred from May to June in 2011 in sea area near Qinhuangdao of the Bohai Sea, leading to huge damage of the scallop culture industry. Similar blooms have been observed in this region for three years. The causative species of the bloom, which dominated the phytoplankton community with the maximum cell density around 109 cell/L, could not be identified with morphological features due to the small cell size (∼2 m m). A pigment analytical method was then adopted to analyze the pigment profile of the phytoplankton samples collected from the blooming sea area. It was found that pico-sized (<2 m m), nano-sized (2–20 m m), and bulk phytoplankton samples had similar pigment profile, representing the pigment signature of the bloom-causative species. The major pigments detected included 19-butanoyloxyfucoxanthin (But-fuco), fucoxanthin (Fuco), diadinoxanthin (Diad) and chlorophyll a (Chl a), and high content of But-fuco was the most significant characteristics of the phytoplankton samples. Based on the pigment composition and content, the bloom-causative species could be tentatively identified as pelagophyte, “type 8” group of haptophyte, or silicoflagellate. Some unique features of the bloom, such as the extremely high cell density, small-sized and But-fuco containing cells, occurring in early summer, and the feeding-cessation effects on scallops, suggest it be a “brown tide” event similar to those reported in the east coast of the United States of America. The recurrent “brown tide” events and their dramatic impacts on the shellfish mariculture industry in Qinhuangdao need close attention in the coming years.

Keyword

harmful algal bloom pigment HPLC 19-butanoyloxyfucoxanthin pelagophyte haptophyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen R A, Saunders G W, Paskind M P, Sexton J P. 1993. Ultrastructure and 18S rRNA gene sequence for Pelagomonas calceolate gen.et sp. nov. and the description of a new algal class the Pelagophyceae class nov. Journal of Phycology, 29(5): 701–715.CrossRefGoogle Scholar
  2. Antajan E, Chretiennot-Dinet M J, Leblanc C, Daro M H, Lancelot C. 2004. 19′-hexanoyloxyfucoxanthin may not be the appropriate pigment to trace occurrence and fate of Phaeocystis: the case of P. globosa in Belgian coastal waters. Journal of Sea Research, 52(3): 165–177.CrossRefGoogle Scholar
  3. Bachvaroff T R, Adolf J E, Place A R. 2009. Strain variation in Karlodinium v eneficum (dinophyceae): toxin profiles, pigments, and growth characteristics. Journal o f Phycology, 45(1): 137–153.CrossRefGoogle Scholar
  4. Bidigare R R. 1989. Photosynthetic pigment composition of the brown-tide alga: unique chlorophyll and carotenoid derivatives. In: Elizabeth M, Cosper V M B E eds. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Springer-Verlag, New York. p.57–75.Google Scholar
  5. Bold H C, Wynne M J. 1985. Introduction to the Algae. 2 nd edn. Prentice-Hall Inc, Englewood Cliffs, NJ. 848p.Google Scholar
  6. Breton E, Sautour B, Brylinski J M. 1999. No feeding on Phaeocystis sp. as solitary cells (post-bloom period) by the copepod Temora longicornis in the coastal waters of the English Channel. Hydrobiologia, 414: 13–23.CrossRefGoogle Scholar
  7. Bricelj V M, Lonsdale D J. 1997. Aureococcus anophagefferens: Causes and ecological consequences of brown tides in US mid-Atlantic coastal waters. Limnology and Oceanography, 42(5Part 2): 1 023–1 038.Google Scholar
  8. Carreto J I, Montoya N, Akselman R, Carignan M O, Silva R I, Colleoni D. 2008. Algal pigment patterns and phytoplankton assemblages in different water masses of the Rio de la Plata maritime front. Continental Shelf Research, 28(13): 1 589–1 606.CrossRefGoogle Scholar
  9. Chen Y Q, Wang N, Zhang P, Zhou H, Qu L H. 2002. Molecular evidence identifies bloom-forming Phaeocystis (Prymnesiophyta) from coastal waters of southeast China as Phaeocystis globosa. Biochemical Systematics and Ecology, 30(1): 15–22.CrossRefGoogle Scholar
  10. Cosper E M, Bricelj V M, Carpenter E J. 1989. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and other Unusual Blooms. Springer-Verlag, Berlin. 799p.Google Scholar
  11. Cotonnec G, Brunet C, Sautour B, Thoumelin G. 2001. Nutritive value and selection of food particles by copepods during a spring bloom of Phaeocystis sp. in the English Channel, as determined by pigment and fatty acid analyses. Journal of Plankton Research, 23(7): 693–703.CrossRefGoogle Scholar
  12. Daugbjerg N, Hansen G, Larsen J, Moestrup O. 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia, 39(4): 302–317.CrossRefGoogle Scholar
  13. Deyoe H R, Stockwell D A, Bidigare R R, Latasa M, Johnson P W, Hargraves P E, Suttle C A. 1997. Description and characterization of the algal species Aureoumbra lagunensis gen. et sp. nov. and referral of Aureoumbra and Aureococcus to the Pelagophyceae. Journal of Phycology, 33(6): 1 042–1 048.CrossRefGoogle Scholar
  14. Edvardsen B, Eikrem W, Shalchian-Tabrizi K, Riisberg I, Johnsen G, Naustvoll L, Throndsen J. 2007. Verrucophora farcimen gen. et sp. nov. (Dictyochophyceae, Heterokonta)—a bloom-forming ichthyotoxic flagellate from the Skagerrak, Norway. Journal of Phycology, 43(5): 1 054–1 070.CrossRefGoogle Scholar
  15. Eker-Develi E, Berthon J F, Van Der Linde D. 2008. Phytoplankton class determination by microscopic and HPLC-CHEMTAX analyses in the southern Baltic Sea. Marine Ecology Progress Series, 359: 69–87.CrossRefGoogle Scholar
  16. Ekrem W, Romari K, Larasa M, Le Gall F, Throndsen J, Vaulot D. 2004. Florenciella parvuld gen. et sp. nov. (Dictyochophyceae, Heterokontophyta), a small flagellate isolated from the English Channel. Phycologia, 43(6): 658–668.CrossRefGoogle Scholar
  17. Fahnenstiel G L, Redalje D G, Lohrenz S E. 1994. Has the importance of photoautotrophic picoplankton been overestimated?. Limnology and Oceanography, 39(2): 432–438.CrossRefGoogle Scholar
  18. Gobler C J, Boneillo G E, Debenham C J, Caron D A. 2004. Nutrient limitation, organic matter cycling, and plankton dynamics during an Aureococcus anophagefferens bloom. Aquatic Microbial Ecology, 35(1): 31–43.CrossRefGoogle Scholar
  19. Gobler C J, Lonsdale D J, Boyer G L. 2005. A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et Sieburth). Estuaries, 28(5): 726–749.CrossRefGoogle Scholar
  20. Graham L E, Wilcox L W. 2000. Algae. Prentic-Hall, Inc. Upper Saddle River, NJ. 399p.Google Scholar
  21. Green J C, Leadbeater B S C. 1994. The Haptophyte Algae. Clarendon Press, Oxford. 446p.Google Scholar
  22. Jeffrey S W, Vesk M. 2005. Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey S W, Mantoura R F C, Wright S W eds. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. 2 nd edn. UNESCO, Paris. p.37–84.Google Scholar
  23. Lionard M, Muylaert K, Tackx M, Vyverman W. 2008. Evaluation of the performance of HPLC-CHEMTAX analysis for determining phytoplankton biomass and composition in a turbid estuary (Schelde, Belgium). Estuarine Coastal and Shelf Science, 76(4): 809–817.CrossRefGoogle Scholar
  24. Liu D Y, Keesing J K, Xing Q U, Shi P. 2009. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Marine Pollution Bulletin, 58(6): 888–895.CrossRefGoogle Scholar
  25. Lomas M W and Gobler C J. 2004. Aureococcus anophagefferens research: 20 years and counting. Harmful Algae, 3(4): 273–277.CrossRefGoogle Scholar
  26. Moestrup Ø, Thomsen H A. 1990. Dictyocha speculum (Silicoflagellata, Dictyophyceae), studies on armoured and unarmoured stages. Biologiske Skrifter, 37: 1–57.Google Scholar
  27. Pang S J, Liu F, Shan T F, Xu N, Zhang Z H, Gao S Q, Chopin T, Sun S. 2010. Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses. Marine Environmental Research, 69(4): 207–215.CrossRefGoogle Scholar
  28. Prins T C, Dankers N, Smaal A C. 1994. Seasonal variation in the filtration rates of a semi-natural mussel bed in relation to seston composition. Journal of Experimental Marine Biology a nd Ecology, 176(1): 69–86.CrossRefGoogle Scholar
  29. Probyn T, Pitcher G, Pienaar R, Nuzzi R. 2001. Brown tides and mariculture in Saldanha Bay, South Africa. Marine Pollution Bulletin, 42(5): 405–408.CrossRefGoogle Scholar
  30. Qi Y Z, Chen J F, Wang Z H, Xu N, Wang Y, Shen P P, Lu S H, Hodgkiss I J. 2004. Some observations on harmful algal bloom (HAB) events along the coast of Guangdong, southern China in 1998. Hydrobiologia, 512(1–3): 209–214.CrossRefGoogle Scholar
  31. Schluter L, Mohlenberg F, Havskum H, Larsen S. 2000. The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Marine Ecology Progress Series, 192: 49–63.CrossRefGoogle Scholar
  32. Schoemann V, Becquevort S, Stefels J, Rousseau W, Lancelot C. 2005. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. Journal of Sea Research, 53(1–2): 43–66.CrossRefGoogle Scholar
  33. Sieburth J M, Johnson P W, Hargrves P E. 1988. Ultrastructure and ecology of Aureococcus anophagefferens gen. et sp. nov. (Chrysophyceae): the dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, summer 1985. Journal of Phycology, 24(3): 416–425.CrossRefGoogle Scholar
  34. Sieracki M E, Gobler C J, Cucci T L, Thier E C, Gilg I C, Keller M D. 2004. Pico- and nanoplankton dynamics during bloom initiation of Aureococcus in a Long Island, NY bay. Harmful Algae, 3(4): 459–470.CrossRefGoogle Scholar
  35. Smaal A C, Twisk F. 1997. Filtration and absorption of Phaeocystis cf. globosa by the mussel Mytilus edulis L. Journal of Experimental Marine Biology and Ecology, 209(1–2): 33–46.CrossRefGoogle Scholar
  36. State Oceanic Administration. 2005. Bulletin of Marine Environmental Quality of China, 2004. (in Chinese)Google Scholar
  37. State Oceanic Administration. 2007. Bulletin of Marine Environmental Quality of China, 2006. (in Chinese).Google Scholar
  38. Trice T M, Glibert P M, Lea C, Van Heukelem L. 2004. HPLC pigment records provide evidence of past blooms of Aureococcus anophagefferens in the coastal bays of Maryland and Virginia, USA. Harmful Algae, 3(4): 295–304.CrossRefGoogle Scholar
  39. Van Heukelem L, Thomas C S. 2001. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. Journal of Chromatography A, 910(1): 31–49.CrossRefGoogle Scholar
  40. Van Leeuwe M A, Stefels J. 1998. Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). II. Pigment composition. Journal of Phycology, 34(3): 496–503.CrossRefGoogle Scholar
  41. Vaulot D, Eikrem W, Viprey M, Moreau H. 2008. The diversity of small eukaryotic phytoplankton (≤ 3 μm) in marine ecosystems. FEMS Microbiology Reviews, 32(5): 795–820.CrossRefGoogle Scholar
  42. Wang C, Yu R C, Zhou M J. 2011. Acute toxicity of live and decomposing green alga Ulva (Enteromorpha) prolifera to abalone Haliotis discus hannai. Chinese Journal of Oceanology and Limnology, 29(3): 541–546.CrossRefGoogle Scholar
  43. Wright S W, Jeffrey S W, Mantoura R, Llewellyn C A, Bjornland T, Repeta D, Welschmeyer N. 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine-phytoplankton. Marine Ecology Progress Series, 77(2–3): 183–196.CrossRefGoogle Scholar
  44. Zapata M, Rodriguez F, Garrido J L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C 8 column and pyridine-containing mobile phases. Marine Ecology Progress Series, 195: 29–45.CrossRefGoogle Scholar
  45. Zapata M, Jeffrey S W, Wright S W, Rodriguez F, Garrido J L, Clementson L. 2004. Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Marine Ecology Progress Series, 270: 83–102.CrossRefGoogle Scholar
  46. Zhou M J, Shen Z L, Yu R C. 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research, 28(12): 1 483–1 489.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fanzhou Kong (孔凡洲)
    • 1
    • 2
  • Rencheng Yu (于仁成)
    • 1
  • Qingchun Zhang (张清春)
    • 1
  • Tian Yan (颜天)
    • 1
  • Mingjiang Zhou (周名江)
    • 1
  1. 1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations