Advertisement

The loss of genetic diversity during captive breeding of the endangered sculpin, Trachidermus fasciatus, based on ISSR markers: implications for its conservation

  • Xiaoxiao Bi (毕潇潇)
  • Qiaoli Yang (杨巧莉)
  • Tianxiang Gao (高天翔)Email author
  • Chuangju Li (李创举)
Biology

Abstract

Inter-simple sequence repeat (ISSR) markers were used to determine the genetic variation and genetic differentiation of cultured and wild populations of Trachidermus fasciatus, an endangered catadromous fish species in China. Six selected primers were used to amplify DNA samples from 85 individuals, and 353 loci were detected. Relatively low genetic diversity was detected in the cultured population (the percentage of polymorphic loci PPL = 73.80%, Nei’s gene diversity h = 0.178 2, Shannon information index I = 0.276 9). However, the genetic diversity at the species level was relatively high (PPL = 91.78%; h = 0.258 3, I = 0.398 6). The UPGMA tree grouped together the genotypes almost according to their cultured and wild origin, showing distinct differences in genetic structure between wild and cultured populations. The pairwise F st values confirmed significant genetic differentiation between wild and cultured samples. The cultivated population seems to be low in genetic diversity as a result of detrimental genetic effects in the captive population. The results suggest that ISSR markers are effective for rapid assessment of the degree of diversity of a population, thus giving important topical information relevant to preserving endangered species.

Keyword

inter-simple sequence repeat (ISSR) Trachidermus fasciatus conservation genetic diversity genetic differentiation 

References

  1. Alarcón J A, Magoulas A, Georgakopoulos E Z, Alvarez M C. 2004. Genetic comparison of wild and cultivated European populations of the gilthead sea bream (Sparus aurata). Aquaculture, 230: 65–80.CrossRefGoogle Scholar
  2. Allendorf F W, Phelps S R. 1980. Loss of genetic variation in a hatchery stock of cutthroat trout. Trans. Am. Fish. Soc., 109: 537–543.CrossRefGoogle Scholar
  3. Allendorf F W, Ryan N. 1987. Genetic management of hatchery stocks. In: Ryan N and Utter F W eds. Population Genetics and Fishery Management. Univ. of Washington Press, Seattle. p.141–159.Google Scholar
  4. Choi K C, Jeon S R, Kim I S. 1984. The Atlas of Korean Fresh-water Fishes (8th Edition). Korean Institute Fresh-Water Biology, Seoul. 103p.Google Scholar
  5. Crandall K A, Bininda-Emonds O R P, Mace G M, Wayne R K. 2000. Considering evolutionary processes in conservation biology. Trends Ecol. Evol., 15: 290–295.CrossRefGoogle Scholar
  6. Davis G P, Hetzel D J S. 2000. Integrating molecular genetic technology with traditional approaches for genetic improvement in aquaculture species. Aquac. Res., 31: 3–10.CrossRefGoogle Scholar
  7. Durand R, Wada K, Blanc F. 1993. Genetic variation in wild and hatchery stocks of the black pearl oyster, Pinctada margaritifera, from Japan. Aquaculture, 110: 27–40.CrossRefGoogle Scholar
  8. Excoffier L, Laval G, Schneider S. 2006. Arlequin ver 3.1: An Integrated Software Package for Population Genetics Data Analysis. Computational and Molecular Population Genetics Lab (CMPG), Institute of Zoology University of Berne, Switzerland.Google Scholar
  9. Excoffier L, Smouse P E, Quattro J M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479–491.Google Scholar
  10. Fang X Y, Zhang Q Q, Qi J, Wang Z G, Bao Z M. 2006. RAPD and ISSR analysis on genetic diversity for wild and cultured olive flounder Paralichthys olivaceus. Oceanol. Limnol. Sin., 37(2): 138–142. (in Chinese with English abstract)Google Scholar
  11. Fischer J, Lindenmayer D B. 2000. An assessment of the published results of 22 animal relocations. Biol. Conserv., 96: 1–11.CrossRefGoogle Scholar
  12. Frankham R. 2005. Genetics and extinction. Biol. Conserv., 126: 131–140.CrossRefGoogle Scholar
  13. Frankham R. 2008. Genetic adaptation to captivity in species conservation programs. Mol. Ecol., 17: 325–333.CrossRefGoogle Scholar
  14. Frankham R, Ballou J D, Briscoe D A. 2002. Introduction to Conservation Genetics. Cambridge Univ. Press, UK. 617p.Google Scholar
  15. Fraser D J. 2008. How well can captive breeding programs conserve biodiversity? A review of salmonids. Evol. Appl., 1: 535–586.CrossRefGoogle Scholar
  16. Fraser D J, Bernatchez L. 2001. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol. Ecol., 10: 2 741–2 752.Google Scholar
  17. Gamfeldt L, Kallstrom B. 2007. Increasing intraspecific diversity increases predictability in population survival in the face of perturbations. Oikos, 116: 700–705.CrossRefGoogle Scholar
  18. Griffith B, Scott J M, Carpenter J W, Reed C. 1989. Translocations as a species conservation tool: status and strategy. Science, 245: 477–480.CrossRefGoogle Scholar
  19. Hampl V, Pavlicek A, Flegr J. 2001. Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. Int. J. Syst. Evol. Microbiol., 3: 731–735.CrossRefGoogle Scholar
  20. Hartl D L, Clark A G. 1989. Principles of Population Genetics (2nd Edition). Sinauer Associates, Sunderland, Massachusetts. 682p.Google Scholar
  21. Huang J C, Sun M. 2000. Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. Theor. Appl. Genet., 100: 1 050–1 060.CrossRefGoogle Scholar
  22. Iguchi K, Watanabe K, Nishida M. 1999. Reduced mitochondrial DNA variation in hatchery populations of ayu (Plecoglossus altivelis) cultured for multiple generations. Aquaculture, 178: 235–243.CrossRefGoogle Scholar
  23. Jiang Y. 1985. Trachidermus fasciatus Heckel. In: Zhang R, Lu S, Zhao C, Chen L, Zang Z, Jiang Y eds. Fish Eggs and Larvae in the Offshore Waters of China. Shanghai Science and Technology Press, Shanghai, China. p.179–180. (in Chinese)Google Scholar
  24. Kumar M, Tamura K, Nei M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform., 5: 150–163.CrossRefGoogle Scholar
  25. Lande R. 1995. Breeding plans for small populations based on the dynamics of quantitative genetic variance. In: Ballou J D, Gilpin M, Foose T J eds. Population Management for Survival and Recovery: Analytical Methods and Strategies in Small Population Conservation. Columbia Univ. Press, New York. p.318–340.Google Scholar
  26. Lelek A. 1987. The Freshwater Fishes of Europe, Volume 9: Threatened Fishes of Europe. Aula Verlag, Wiesbaden. 343p.Google Scholar
  27. Li K B, Shao B X, Rui J S. 1984. A histological study on the digestive organs of Trachidermus fasciatus during seaward migration. J. Fudan Univ. (Nat. Sci.), 23(1): 7–16. (in Chinese with English abstract)Google Scholar
  28. Lind C E, Evans B S, Knauer J, Taylor J J U, Jerry D R. 2009. Decreased genetic diversity and a reduced effective population size in cultured silver-lipped pearl oysters (Pinctada maxima). Aquaculture, 286: 12–19.CrossRefGoogle Scholar
  29. Liu Y G, Chen S L, Li J, Li B F. 2006. Genetic diversity in three Japanese flounder (Paralichthys olivaceus) populations revealed by ISSR markers. Aquaculture, 255: 565–572.CrossRefGoogle Scholar
  30. Liu Y G, Yu Z G, Bao B L, Sun X Q, Shi Q L, Liu L X. 2009. Population genetics studies of half-smooth tongue sole Cynoglossus semilaevis using ISSR markers. Biochem. Syst. Ecol., 36: 821–827.CrossRefGoogle Scholar
  31. Merril C R, Switzer R C, Van Keuren M L. 1979. Trace polypeptides in cellular extracts and human body fluid detected by two-dimensional electrophoresis and a highly sensitive silver stain. Biochemistry, 76: 4 335–4 339.Google Scholar
  32. Moritz C. 2002. Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst. Biol., 51: 238–254.CrossRefGoogle Scholar
  33. Nagaoka T, Ogihara Y. 1997. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet., 94: 597–602.CrossRefGoogle Scholar
  34. Nehlsen W, Williams J E, Lichatowich J A. 1991. Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho, and Washington. Fisheries, 16(2): 4–21.CrossRefGoogle Scholar
  35. Nei M. 1972. Genetic distance between populations. Am. Nat., 106: 283–292.CrossRefGoogle Scholar
  36. Nei M, Li W H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A., 76: 5 259–5 273.CrossRefGoogle Scholar
  37. Onikura N, Takeshita N, Matsui S, Kimura S. 2002. Spawning grounds and nests of Trachidermus fasciatus (Cottidae) in the Kashima and Shiota estuaries system facing Ariake Bay, Japan. Ichthyol. Res., 49: 198–201.CrossRefGoogle Scholar
  38. Qian W, Ge S, Hong D Y. 2001. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor. Appl. Genet., 102: 440–449.CrossRefGoogle Scholar
  39. Rodriguez-Ramilo S T, Moran P, Caballero A. 2006. Relaxtion of selection with equalization of parental contributions in conservation programs: an experimental test with Drosophila melanogaster. Genetics, 172: 1 043–1 054.Google Scholar
  40. Ryder O A. 1986. Species conservation and systematics-the dilemma of subspecies. Trends Ecol. Evol., 1: 9–10.CrossRefGoogle Scholar
  41. Shao B X. 1978. The seasonal change of the thyroid gland of Trachidermus fasciatus in relation to the seaward migration. Oceanol. Limnol. Sin., 9(2): 230–235. (in Chinese with English abstract)Google Scholar
  42. Slatkin M. 1987. Gene flow and the geographic structure of natural populations. Science, 236: 787–792.CrossRefGoogle Scholar
  43. Soulé M E. 1987. Viable Populations for Conservation. Cambridge Univ. Press, Cambridge, England. 189p.CrossRefGoogle Scholar
  44. Spielman D, Brook W B, Frankham R. 2004. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. U. S. A., 101: 15 261–15 264.CrossRefGoogle Scholar
  45. Tanaka S. 1931. On the distribution of fishes in Japanese waters. J. Coll. Sci. Imp. Univ. Tokyo, 3: 1–90.Google Scholar
  46. Taniguchi N, Sumantadinata K, Lyma S. 1983. Genetic change in the first and second generations of hatchery stock of black seabream. Aquaculture, 35: 309–320.CrossRefGoogle Scholar
  47. Trippel E A, Rideout R M, O’Reilly P T, Herbinger C M, Neil S R E, Hamilton L. 2009. Communal spawning leads to high potential for inbreeding in gadoid aquaculture. Aquaculture, 296: 27–35.CrossRefGoogle Scholar
  48. Vales-Alonso J, Fernandez J, Gonzalez-Castano F J, Caballero A. 2003. A parallel optimization approach for controlling allele diversity in conservation schemes. Math. Biosci., 183: 161–173.CrossRefGoogle Scholar
  49. Wang J. 2004. Monitoring and managing genetic variation in group breeding populations without individual pedigrees. Conserv. Genet., 5: 813–825.CrossRefGoogle Scholar
  50. Wang J Q. 1999. Advances in studies on the ecology and reproductive biology of Trachidermus fasciatus Heckel. Acta Hydrobio. Sin., 23(6): 729–734. (in Chinese)Google Scholar
  51. Wang J Q, Cheng G, Tang Z P. 2001. The distribution of roughskin sculpin (Trachidermus fasciatus Heckel) in Yalu River basin, China. J. Fudan Univ., 40(5): 471–476. (in Chinese with English abstract)Google Scholar
  52. Wang J Q, Liang H Z. 2008. Populations identification in morphology of roughskin sculpin Trachidermus fasciatus in China. Oceanol. Limnol. Sin., 39(4): 348–353. (in Chinese with English abstract)Google Scholar
  53. Wang S F, Du J Y, Su Y Q, Ding S X, Wang J. 2007. The genetic structure of nature and reared groups of Hapalogenys nitens by ISSR analysis. Acta Oceanol. Sin., 29(4): 105–110. (in Chinese with English abstract)Google Scholar
  54. Wolf C M, Garland T, Griffith B. 1998. Predictors of avian and mammalian translocation success: reanalysis with phylogenetically independent contrasts. Biol. Conserv., 86: 243–255.CrossRefGoogle Scholar
  55. Wolf C M, Griffith B, Reed C, Temple S A. 1996. Avian and mammalian translocations: Update and reanalysis of 1987 survey data. Conserv. Biol., 10: 1 142–1 154.CrossRefGoogle Scholar
  56. Wright S. 1931. Evolution in Mendelian populations. Genetics, 16: 97–159.Google Scholar
  57. Xiao H, Chang J B, Liu Y. 1999. Evaluation on status of artificial propagation and releasing of Chinese sturgeon in the Yangtze River. Acta Hydrobio. Sin., 23(6): 572–576. (in Chinese with English abstract)Google Scholar
  58. Yeh F C, Yang R C, Boyle T B J, Ye Z H, Mao J X. 1997. POPGENE, the User-Friendly Shareware for Population Genetic Analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada.Google Scholar
  59. Zhang R M, Ma Y W, Turxun, Guo Y, Liu Y, Aizezi, Abudu. 2008. Preliminary observation on embryonic and fry upgrowth of Aspiorhynchus laticeps (Day). Arid Zone Res., 25(2): 190–195. (in Chinese with English abstract)CrossRefGoogle Scholar
  60. Zhao J G, Sheng B S, Gu H L, Sun G Y, Qiu Y C, Xue Z Y. 1974. Artificial propagation of Trachidermus fasciatus. Fisheries Sci. & Technol. Inform., 6: 12–15. (in Chinese with English abstract)Google Scholar
  61. Zhou J G, Yang D G, Wu G X, Wang Z L, Liu L H, Chen J S. 1999. Development of Chinese sucker (Myxocyprinus asiaticus) larval and juvenile and techniques for fry and fingerlings rearing. J. Huazhong Agr. Uni., 18(3): 263–267. (in Chinese with English abstract)Google Scholar
  62. Zietckiewicz E, Rafalsky A, Labuda D. 1994. Genome fingerprinting by Inter-Simple Sequence Repeat (ISSR)-anchored polymerase chain reaction amplification. Genomics, 20: 176–183.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiaoxiao Bi (毕潇潇)
    • 1
  • Qiaoli Yang (杨巧莉)
    • 1
  • Tianxiang Gao (高天翔)
    • 1
    Email author
  • Chuangju Li (李创举)
    • 2
  1. 1.Fisheries CollegeOcean University of ChinaQingdaoChina
  2. 2.Yangtze River Fisheries Research InstituteChinese Academy of Fishery SciencesJingzhouChina

Personalised recommendations