Chinese Journal of Oceanology and Limnology

, Volume 29, Issue 2, pp 446–459 | Cite as

A spectral mixture model analysis of the Kuroshio variability and the water exchange between the Kuroshio and the East China Sea

  • Jim Song (宋军)
  • Huijie Xue (薛惠洁)
  • Xianwen Bao (鲍献文)
  • Dexing Wu (吴德星)
  • Fei Chai (柴扉)
  • Lei Shi (施磊)
  • Zhigang Yao (姚志刚)
  • Yongzhi Wang (王勇智)
  • Feng Nan (南峰)
  • Kai Wan (万凯)


For understanding more about the water exchange between the Kuroshio and the East China Sea, We studied the variability of the Kuroshio in the East China Sea (ECS) in the period of 1991 to 2008 using a three-dimensional circulation model, and calculated Kuroshio onshore volume transport in the ECS at the minimum of 0.48 Sv (1 Sv ≡ 106 m3/s) in summer and the maximum of 1.69 Sv in winter. Based on the data of WOA05 and NCEP, The modeled result indicates that the Kuroshio transport east of Taiwan Island decreased since 2000. Lateral movements tended to be stronger at two ends of the Kuroshio in the ECS than that of the middle segment. In addition, we applied a spectral mixture model (SMM) to determine the exchange zone between the Kuroshio and the shelf water of the ECS. The result reveals a significantly negative correlation (coefficient of −0.78) between the area of exchange zone and the Kuroshio onshore transport at 200 m isobath in the ECS. This conclusion brings a new view for the water exchange between the Kuroshio and the East China Sea. Additional to annual and semi-annual signals, intra-seasonal signal of probably the Pacific origin may trigger the events of Kuroshio intrusion and exchange in the ECS.


East China Sea (ECS) Kuroshio spectral clustering spectral mixture model water mass analysis water exchange 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andres M, Wimbush M, Park J H et al. 2008. Observations of Kuroshio flow variations in the East China Sea, J. Geophys. Res., 113(C05013), doi: 10.1029/2007JC004200.Google Scholar
  2. Batchelor G K. 1967. An Introduction to Fluid Dynamic. Cambridge Univ. Press, London, U. K. p. 156–164.Google Scholar
  3. Chai F, Liu G, Xue H et al. 2009. Seasonal and interannual variability of carbon cycle in South China Sea: A three-dimensional physical-biogeochemical modeling study. J. Oceanogr., 65: 703–720.CrossRefGoogle Scholar
  4. Chen C, Rou R, Paid S C et al. 1995. Exchange of water masses between the East-China-Sea and the Kuroshio off Northeastern Taiwan. Cont. Shelf Res., 15(1): 19–39.CrossRefGoogle Scholar
  5. Chen H, Yuan Y, Feng H. 2006. The multi-core structure of the main part of the Kuroshio at G-PN section in the East China Sea. Chinese Sci. Bull., 51(6): 738–746.CrossRefGoogle Scholar
  6. Chern C S, Wang J, Wang D P. 1990. The exchange of Kuroshio and East China Sea shelf water. J. Geophys. Res., 95(C9): 16 017–16 023.CrossRefGoogle Scholar
  7. Chuang W S, Liang W D. 1994. Seasonal variability of intrusion of the Kuroshio water across the continental shelf northeast of Taiwan. J. Oceanogr., 50(5): 531–542.CrossRefGoogle Scholar
  8. Clancy L J. 1975. Aerodynamics. Halsted Press, New York, U.S.A. p. 71–72.Google Scholar
  9. Fukuoka J. 1957. A note on the westward intensification of ocean current. Records of Oceanographic Works in Japan, 1: 7–8.Google Scholar
  10. Guan B. 1980. Some results from the study of the variation of the Kuroshio in the East China Sea. In: the Kuroshio I V ed. Saikon Publ., Tokyo, Japan, p. 897–911.Google Scholar
  11. Guo X, Hukuda H, Miyazawa Y et al. 2003. A triply nested ocean model for simulating the Kuroshio - roles of horizontal resolution on JEBAR. J. Phys. Oceanogr., 33(1): 146–169.CrossRefGoogle Scholar
  12. Guo X, Miyazawa Y, Yamagata T. 2006. The Kuroshio onshore intrusion along the shelf break of the East China Sea: The origin of the Tsushima Warm Current. J. Phys. Oceanogr., 36(12): 2205–2231.CrossRefGoogle Scholar
  13. Hu P, Hou Y, Le K et al. 2007. Study advances on the Kuroshio in the East China Sea and currents in the region east of Ryukyu islands. Studio. Marina Sinica, 1(00): 28–34. (in Chinese with English abstract)Google Scholar
  14. Imasato N, Qiu B. 1987. An event in water exchange between continental-shelf and the Kuroshio off southern Japan - lagrangian tracking of a low-salinity water mass on the Kuroshio. J. Phys. Oceanogr., 17(7): 953–968.CrossRefGoogle Scholar
  15. Isobe A. 2008. Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves. J. Oceanogr., 64: 569–584.CrossRefGoogle Scholar
  16. Isobe A, Beardsley R C. 2006. An estimate of the cross-frontal transport at the shelf break of the East China Sea with the Finite Volume Coastal Ocean Model. J. Oceanogr., 111(C0312), doi: 10.1029/2005JC003290.Google Scholar
  17. James C, Wimbush M, Ichikawa H. 1999. Kuroshio meanders in the East China Sea. J. Phys. Oceanogr., 29(2): 259–272.CrossRefGoogle Scholar
  18. Jan S, Sheu D, Kuo H. 2006. Water mass and throughflow transport variability in the Taiwan Strait. J. Geophys. Res., 111(C12012), doi: 10.1029/2006JC003656.Google Scholar
  19. Jia Y, Liu Q, Liu W. 2005. Primary study of the mechanism of eddy shedding from the Kuroshio bend in Luzon Strait. J. Oceanogr., 61(6): 1 017–1 027.CrossRefGoogle Scholar
  20. Jitendra M, Serge B, Thomas L et al. 2001. Contour and texture analysis for image segmentation. Int. J. Comput. Vision, 43(1): 7–27.CrossRefGoogle Scholar
  21. Johns W E, Lee T, Zhang D et al. 2001. The Kuroshio east of Taiwan: Moored transport observations from the WOCE PCM-1 array. J. Phys. Oceanogr., 31(4): 1031–1053.CrossRefGoogle Scholar
  22. Km K R, Cho Y K, Kang D J et al. 2005. The origin of the Tsushima Current based on oxygen isotope measurement. Geophys. Res. Lett., 32(3): L3602.CrossRefGoogle Scholar
  23. Lai J, Huang T J, Liaw Y C 2009. A fast k-means clustering algorithm using cluster center displacement. Pattern Recogn., 42(11): 2551–2 556.CrossRefGoogle Scholar
  24. Lan Y C, Lee M A, Liao C H et al. 2009. Copepod community structure of the winter frontal zone induced by the Kuroshio branch current and the China coastal current in the Taiwan strait. Journal of Marine Science and Technology-Taiwan, 17(1): 1–6.Google Scholar
  25. Large W, McWilliams J C, Doney S C et al. 1994. Oceanic vertical mixing - A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32(4): 363–403.CrossRefGoogle Scholar
  26. Lee J S, Matsuno T. 2007. Intrusion of Kuroshio water onto the continental shelf of the East China Sea. J. Oceanogr., 63(2): 309–325.CrossRefGoogle Scholar
  27. Li F, Xie J, Li Y. 2004. New methods of fitting the membership function of oceanic water masses. Journal of Ocean University of China (English Edition), 3(1): 1–9.CrossRefGoogle Scholar
  28. Li G X, Han X, Yue S et al. 2006. Monthly variations of water masses in the East China Seas. Cont. Shelf Res., 26(16): 1954–1970.CrossRefGoogle Scholar
  29. Lin S, Hsieh I J, Huang K M et al. 2002. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chem. Geol., 182(2): 377–394.CrossRefGoogle Scholar
  30. Lin S F, Tang T Y, Jan S et al. 2005. Taiwan Strait current in winter. Cont. Shelf Res., 25(9): 1023–1042.CrossRefGoogle Scholar
  31. Liu G M, Chai F. 2009a. Seasonal and interannual variation of physical and biological processes during 1994–2001 in the Japan/East Sea: a three-dimensional physical-biogeochemical modeling study. J. Marine Syst., 66(2): 420–431.Google Scholar
  32. Liu G M, Chai F. 2009b. Seasonal and interannual variability of primary and export production in South China Sea: A three-dimensional physical-biogeochemical model study. J. Marine Sci., 78(2): 265–277.Google Scholar
  33. Luo B, Richard C W, Edwin R H et al. 2003. Spectral clustering of graphs. Computer Analysis of Images and Patterns, Proceedings, 2756: 540–548.CrossRefGoogle Scholar
  34. Ma C, Wu D X, Lin X P. 2009. Variability of surface velocity in the Kuroshio Current and adjacent waters derived from Argos drifter buoys and satellite altimeter data. Chin. J. Oceanol. Limnol., 27(2): 208–217.CrossRefGoogle Scholar
  35. Matsuno T, Lee J S, Yanao S. 2009. The Kuroshio exchange with the South and East China Seas. Ocean Sci., 5(3): 303–312.CrossRefGoogle Scholar
  36. Menschaert G, Tom T, Bart L et al. 2009. Spectral clustering in peptidomics studies helps to unravel modification profile of biologically active peptides and enhances peptide identification rate. Proteomics, 9(18): 4381–4388.CrossRefGoogle Scholar
  37. Miller A R. 1950. A study of mixing processes over the edge of the continental shelf. J. Mar. Res, 9(2): 145–160.Google Scholar
  38. Mizuno K, White W B. 1983. Annual and interannual variability in the Kuroshio current system. J. Phys. Oceanogr., 13(10): 1 847–1 867.CrossRefGoogle Scholar
  39. Morimoto A, Kojima S, Jan S et al. 2009. Movement of the Kuroshio axis to the northeast shelf of Taiwan during typhoon events. Estuar. Coast. Shelf S., 82(3): 547–552.CrossRefGoogle Scholar
  40. Ng A Y, Jordan M I, Weiss Y. 2002. On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 14(1–2): 849–856.Google Scholar
  41. Nitani H. 1972. Beginning of the Kuroshio. In: Kuroshio, Physical Aspects of the Japan Current. Univ. of Wash. Press, Seattle Wash., U.S.A. p. 129–164.Google Scholar
  42. Shchepetkin A F, McWilliams J C. 1998. Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Weather Rev., 126(6): 1 541–1 580.CrossRefGoogle Scholar
  43. Shchepetkin A F, McWilliams J C. 2003. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108(C3), doi: 10.1029/2001JC001047.Google Scholar
  44. Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404.CrossRefGoogle Scholar
  45. Shi J, Malik J. 2000. The 20th anniversary of the IEEE transactions on pattern analysis and machine intelligence. Ieee T. Pattern Anal, 22(1): 1–3.CrossRefGoogle Scholar
  46. Spall M A. 1995. Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. J. Geophys. Res., 100(2): 2543–2 558.CrossRefGoogle Scholar
  47. Stommel H. 1948. The westward intensification of wind-driven ocean currents. Trans. Amer. Geophys. Union, 29(2): 202–206.Google Scholar
  48. Su Y, Yu Z, Li F. 1983. Application of cluster analysis method for analyzing the water-masses in the shallow water area and the analysis of modified water masses in the Huanghai Sea and the East China Sea. Chin. J. Oceanol. Limnol., 14(1): 1–13.Google Scholar
  49. Sverdrup H U, Johnson M W, Fleming R H. 1942. The Oceans, their Physics, Chemistry and General Biology. Pretince-Hall, New York, U.S.A. p. 16–64.Google Scholar
  50. Takikawa T, Morimoto A, Onitsuka G et al. 2008. Characteristics of water mass under the surface mixed layer in Tsushima Straits and the southwestern Japan Sea in autumn. J. Oceanogr., 64(4): 585–594.CrossRefGoogle Scholar
  51. Tang T Y, Yang Y J. 1993. Low frequency current variability on the shelf break northeast of Taiwan. J. Oceanogr., 49(2): 193–210.CrossRefGoogle Scholar
  52. Teague W J, Jacobs G A, Ko D S et al. 2003. Connectivity of the Taiwan, Cheju, and Korea straits. Cont. Shelf Res., 23(1): 63–77.CrossRefGoogle Scholar
  53. Tong M R, Liu Z H, Sun C H et al. 2003. An analysis of data Quality Control Process of the ARGO Profiling Buoy. Ocean Technology, 22(4): 79–84.Google Scholar
  54. Ulrike L. 2007. A tutorial on spectral clustering. Stat. Comput., 17(4): 395–416.CrossRefGoogle Scholar
  55. Wang S L, Chen C, Hong G H et al. 2000. Carbon dioxide and related parameters in the East China Sea. Cont. Shelf Res., 20(4–5): 525–544.CrossRefGoogle Scholar
  56. Wei L, Liu Q, Jia Y. 2004. The Kuroshio transport east of Taiwan and the sea surface height anomaly from the Interior ocean. Journal of Ocean University of China (Oceanic and Coastal Sea Research), 3(2): 135–140.Google Scholar
  57. Wong G, Chao S Y, Li Y H et al. 2000. The Kuroshio edge exchange processes (KEEP) study — an introduction to hypotheses and highlights. Cont. Shelf Res., 20(4–5): 335–347.CrossRefGoogle Scholar
  58. Xiu P, Chai F, Shi L, Xue H et al. 2010. A census of eddy activities in the South China Sea during 1993–2007. J. Geophys. Res., 115(C03012), doi: 10.1029/2009JC005657.Google Scholar
  59. Yanagi T., S. Takahashi. 1993. Seasonal variation of circulations in the East China Sea and the Yellow Sea. J. Oceanogr., 49: 503–520.CrossRefGoogle Scholar
  60. Yang J. 2007. An oceanic current against the wind: How does Taiwan island steer warm water into the East China Sea. J. Phys. Oceanogr., 37(10): 2 563–2 569.CrossRefGoogle Scholar
  61. Yuan Y, Liu Y, Su J. Variability of the Kuroshio in the East China Sea during El-Nino to La-Nina phenomenon of 1997 and 1998. Chinese J. Geophys., 44(2): 199–210.Google Scholar
  62. Zhou H, Xu J, Guo P et al. 2006. A summary on studies of western boundary current system in the North Pacific Ocean. J. Marine Sci., 24(2): 49–59.Google Scholar
  63. Zuo T, Wang R, Chen Y Q et al. 2006. Autumn net copepod abundance and assemblages in relation to water masses on the continental shelf of the Yellow Sea and East China Sea. J. Marine Syst., 59(1–2): 159–172.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2011

Authors and Affiliations

  • Jim Song (宋军)
    • 1
    • 2
    • 3
  • Huijie Xue (薛惠洁)
    • 2
  • Xianwen Bao (鲍献文)
    • 1
  • Dexing Wu (吴德星)
    • 1
  • Fei Chai (柴扉)
    • 2
  • Lei Shi (施磊)
    • 2
  • Zhigang Yao (姚志刚)
    • 1
  • Yongzhi Wang (王勇智)
    • 4
  • Feng Nan (南峰)
    • 1
  • Kai Wan (万凯)
    • 1
  1. 1.Physical Oceanography LaboratoryOcean University of ChinaQingdaoChina
  2. 2.School of Marine SciencesUniversity of MaineOronoUSA
  3. 3.National Marine Data and Information ServiceTianjinChina
  4. 4.The First Institute of OceanographySOAQingdaoChina

Personalised recommendations