Advertisement

Metagenome of microorganisms associated with the toxic Cyanobacteria Microcystis aeruginosa analyzed using the 454 sequencing platform

  • Nan Li (李楠)
  • Lei Zhang (张蕾)
  • Fuchao Li (李富超)
  • Yuezhu Wang (王玥珠)
  • Yongqiang Zhu (朱永强)
  • Hui Kang (康慧)
  • Shengyue Wang (王升跃)
  • Song Qin (秦松)Email author
Article

Abstract

In this study, the 454 pyrosequencing technology was used to analyze the DNA of the Microcystis aeruginosa symbiosis system from cyanobacterial algal blooms in Taihu Lake, China. We generated 183 228 reads with an average length of 248 bp. Running the 454 assembly algorithm over our sequences yielded 22 239 significant contigs. After excluding the M. aeruginosa sequences, we obtained 1 322 assembled contigs longer than 1 000 bp. Taxonomic analysis indicated that four kingdoms were represented in the community: Archaea (n = 9; 0.01%), Bacteria (n = 98 921; 99.6%), Eukaryota (n = 373; 3.7%), and Viruses (n = 18; 0.02%). The bacterial sequences were predominantly Alphaproteobacteria (n = 41 805; 83.3%), Betaproteobacteria (n = 5 254; 10.5%) and Gammaproteobacteria (n = 1 180; 2.4%). Gene annotations and assignment of COG (clusters of orthologous groups) functional categories indicate that a large number of the predicted genes are involved in metabolic, genetic, and environmental information processes. Our results demonstrate the extraordinary diversity of a microbial community in an ectosymbiotic system and further establish the tremendous utility of pyrosequencing.

Keyword

Microcystis aeruginosa ectosymbiosis diversity COGs algal bloom metagenome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleya L, Michard M, Khattabi H, Devaux J. 2006. Coupling of the biochemical composition and calorific ocntent of zooplankters with the Microcystis aeruginosa proliferation in a highly eutrophic reservoir. Environ. Technol., 27(11): 1 181–1 190.CrossRefGoogle Scholar
  2. Baptista M S, Vasconcelos M T. 2006. Cyanobacteria metal interactions: requirements, toxicity, and ecological implications. Crit. Rev. Microbiol., 32(3): 127–137.CrossRefGoogle Scholar
  3. Berg K A, Lyra C, Sivonen K, Paulin L, Suomalainen S, Tuomi P, Rapala J. 2009. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. Isme Journal, 3(3): 314–325.CrossRefGoogle Scholar
  4. Bourne D G, Riddles P, Jones G J, Smith W, Blakeley R L. 2001. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environ. Toxicol., 16(6): 523–534.CrossRefGoogle Scholar
  5. Eiler A, Bertilsson S. 2004. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environmental Microbiology, 6(12): 1 228–1 243.CrossRefGoogle Scholar
  6. Ewing B, Green P. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res., 8(3): 186–194.Google Scholar
  7. Fuhrman J A. 1999. Marine viruses and their biogeochemical and ecological effects. Nature, 399(6 736): 541–548.CrossRefGoogle Scholar
  8. Gordon D, Abajian C, Green P. 1998. Consed: a graphical tool for sequence finishing. Genome Res., 8(3): 195–202.Google Scholar
  9. Harada K, Imanishi S, Kato H, Mizuno M, Ito E, Tsuji K. 2004. Isolation of Adda from microcystin-LR by microbial degradation. Toxicon., 44(1): 107–109.CrossRefGoogle Scholar
  10. Ho L, Hoefel D, Saint C P, Newcombe G. 2007. Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter. Water Res., 41(1): 4 685–4 695.Google Scholar
  11. Huber H, Hohn M J, Rachel R, Fuchs T, Wimmer V C, Stetter K O. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature, 417(6 884): 63–67.CrossRefGoogle Scholar
  12. Ishii H, Nishijima M, Abe T. 2004. Characterization of degradation process of cyanobacterial hepatotoxins by a gram-negative aerobic bacterium. Water Res., 38(11): 2 667–2 676.CrossRefGoogle Scholar
  13. Ishii K. Fukui M. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Applied and Environmental Microbiology, 67(8): 3 753–3 755.CrossRefGoogle Scholar
  14. Jiang L J, Yang L Y, Xiao L, Shi X L, Gao G, Qin B. 2007. Quantitative studies on phosphorus transference occuring between Microcystis aeruginosa and its attached bacterium (Pseudomonas sp.). Hydrobiologia, 581: 161–165.CrossRefGoogle Scholar
  15. Juliana C R, Renan B D, Luis F D B C, Eduardo V C, Edmar C S, Andrea M A N. 2009. Molecular identification and dynamics of microbial communities in reactor treating organic household waste. Appl. Microbiol. Biotechnol., 84(4): 777–789.CrossRefGoogle Scholar
  16. Kroes I, Lepp P W, Relman D A. 1999. Bacterial diversity within the human subgingival crevice. Proceedings of the National Academy of Sciences of the United States of America, 96(25): 14 547–14 552.CrossRefGoogle Scholar
  17. Mackenzie C, Eraso J M, Choudhary M, Roh J H, Zeng X H, Bruscella P, Puskas A, Kaplan S. 2007. Postgenomic adventures with Rhodobacter sphaeroides. Annual Review of Microbiology, 61: 283–307.CrossRefGoogle Scholar
  18. Maruyama T, Kato K, Yokoyama A, Tanaka T, Hiraishi A, Park H D. 2003. Dynamics of microcystin-degrading bacteria in mucilage of Microcystis. Microbial Ecology, 46: 279–288.CrossRefGoogle Scholar
  19. Paerl H. 2008. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. Adv. Exp. Med. Biol., 619: 217–237.CrossRefGoogle Scholar
  20. Petrie L, North N N, Dollhopf S L, Balkwill D L, Kostka J E. 2003. Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Applied and Environmental Microbiology, 69(12): 7 467–7 479.CrossRefGoogle Scholar
  21. Pope P B, Patel B K. 2008. Metagenomic analysis of a freshwater toxic cyanobacteria bloom. FEMS Microbiol. Ecol., 64(1): 9–27.CrossRefGoogle Scholar
  22. Saito T, Okano K, Park H D, Itayama T, Inamori Y, Neilan B A, Burns B P, Sugiura N. 2003. Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese lakes. FEMS Microbiol. Lett., 229(2): 271–276.CrossRefGoogle Scholar
  23. Sedmak B, Elersek T. 2005. Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microb. Ecol., 50(4): 298–305.CrossRefGoogle Scholar
  24. Valeria A M, Ricardo E J, Stephan P, Alberto W D. 2006. Degradation of Microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Cordoba — Argentina). Biodegradation, 17(5): 447–455.CrossRefGoogle Scholar
  25. Wang G C Y, Wang Y. 1997. Frequency of formation of chimeric molecules is a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. Applied and Environmental Microbiology, 63(12): 4 645–4 650.Google Scholar
  26. Webster N S, Wilson K J, Blackall L L, Hill R T. 2001. Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Applied and Environmental Microbiology, 67(1): 434–444.CrossRefGoogle Scholar
  27. Weng L, Rubin E M, Bristow J. 2006. Application of sequence-based methods in human microbial ecology. Genome Research, 16: 316–322.CrossRefGoogle Scholar
  28. Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, Nagasaki K. 2006. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Applied and Environmental Microbiology, 72(2): 1 239–1 247.Google Scholar
  29. Zhang X, Hu H Y, Men Y J, Yang J, Christoffersen K. 2009. Feeding characteristics of a golden alga (Poterioochromonas sp.) grazing on toxic cyanobacterium Microcystis aeruginosa. Water Res., 43(12): 2 953–2 960.CrossRefGoogle Scholar
  30. Zurawell R W, Chen H R, Burke J M, Prepas E E. 2005. Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health-Part B-Critical Reviews, 8(1): 1–37.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2011

Authors and Affiliations

  • Nan Li (李楠)
    • 1
    • 2
    • 3
  • Lei Zhang (张蕾)
    • 1
    • 2
    • 4
  • Fuchao Li (李富超)
    • 2
  • Yuezhu Wang (王玥珠)
    • 5
  • Yongqiang Zhu (朱永强)
    • 5
  • Hui Kang (康慧)
    • 5
  • Shengyue Wang (王升跃)
    • 5
  • Song Qin (秦松)
    • 1
    Email author
  1. 1.Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiChina
  2. 2.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina
  4. 4.South China Sea Institute of OceanologyChinese Academy of SciencesGuangdongChina
  5. 5.Shanghai-MOST Key Laboratory of Health and Disease GenomicsChinese National Human Genome Center at ShanghaiShanghaiChina

Personalised recommendations