Chinese Journal of Oceanology and Limnology

, Volume 29, Issue 2, pp 297–310 | Cite as

Molecular phylogeny and evolution of Scomber (Teleostei: Scombridae) based on mitochondrial and nuclear DNA sequences

  • Jiao Cheng (程娇)
  • Tianxiang Gao (高天翔)
  • Zhenqing Miao (苗振清)
  • Takashi Yanagimoto
Biology

Abstract

A molecular phylogenetic analysis of the genus Scomber was conducted based on mitochondrial (COI, Cyt b and control region) and nuclear (5S rDNA) DNA sequence data in multigene perspective. A variety of phylogenetic analytic methods were used to clarify the current taxonomic Classification and to assess phylogenetic relationships and the evolutionary history of this genus. The present study produced a well-resolved phylogeny that strongly supported the monophyly of Scomber. We confirmed that S. japonicus and S. colias were genetically distinct. Although morphologically and ecologically similar to S. colias, the molecular data showed that S. japonicus has a greater molecular affinity with S. australasicus, which conflicts with the traditional taxonomy. This phylogenetic pattern was corroborated by the mtDNA data, but incompletely by the nuclear DNA data. Phylogenetic concordance between the mitochondrial and nuclear DNA regions for the basal nodes Supports an Atlantic origin for Scomber. The present-day geographic ranges of the species were compared with the resultant molecular phylogeny derived from partition Bayesian analyses of the combined data sets to evaluate possible dispersal routes of the genus. The present-day geographic distribution of Scomber species might be best ascribed to multiple dispersal events. In addition, our results suggest that phylogenies derived from multiple genes and long sequences exhibited improved phylogenetic resolution, from which we conclude that the phylogenetic reconstruction is a reliable representation of the evolutionary history of Scomber.

Keyword

Scomber mitochondrial DNA nuclear DNA phylogeny biogeography dispersal route 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike H. 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov B N, Csaki F ed. International Symposium of Information Theory, 2nd. Akademiai Kiado, Budapest, p. 267–281.Google Scholar
  2. Anderson F E. 2000. Phylogeny and historical biogeography of the loliginid squids (Mollusca: Cephalopoda) based on mitochondrial DNA sequence data. Mol. Phylogenet. Evol., 2: 191–214.CrossRefGoogle Scholar
  3. Benton M J, Ayala F J. 2003. Dating the tree of life. Science, 300: 1 698–1 700.CrossRefGoogle Scholar
  4. Berggren W A. 1978. Recent advances in Cenozoic planktonic foraminiferal biostratigraphy, biochronology, and biogeography: Atlantic Ocean. Micropaleontology, 24: 337–370.CrossRefGoogle Scholar
  5. Bermingham E S, McCaVerty A, Martin P. 1997. Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus. In: Kocher T, Stepien C ed. Molecular Systematics of Fishes. Academic Press, New York. p. 113–126.CrossRefGoogle Scholar
  6. Bowen B W, Bass A L, Rocha L A, Grant W S, Robertson D R. 2001. Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution, 55: 1 029–1 039.CrossRefGoogle Scholar
  7. Brandley M C, Schmitz A, Reeder T W. 2005. Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst. Biol., 54: 373–390.CrossRefGoogle Scholar
  8. Briggs J C. 1984. Centres of origin in biogeography. Biogeographical Monographs No. 1. Biogeography Study Group, University of Leeds, Leeds. 106p.Google Scholar
  9. Campo D, Machado-Schiaffmo G, Perez J, Garcia-Vazquez E. 2007. Phylogeny of the genus Merluccius based on mitochondrial and nuclear genes. Gene, 406: 171–179.Google Scholar
  10. Cantatore P, Roberti M, Pesole G, Ludovico A, Milella F, Gadaleta M N, Saccore G 1994. Evolutionary analysis of cytochrome b sequence in some Perciformes: evidence for a slower rate of evolution than in mammals. J. Mol. Evol., 39: 589–597.CrossRefGoogle Scholar
  11. Catanese G, Manchado M, Fernández-Trujillo A, Infante C. 2010b. A multiplex-PCR assay for the authentication of mackereis of the genus Scomber in processed fish products. Food Chem., 122: 319–326.CrossRefGoogle Scholar
  12. Catanese G, Manchado M, Infante C. 2010a. Evolutionary relatedness of mackereis of the genus Scomber based on complete mitochondrial genomes: Strong support to the recognition of Atlantic Scomber colias and Pacific Scomber japonicus as distinct species. Gene, 452: 35–43.CrossRefGoogle Scholar
  13. Collette B B. 1999. Mackereis, molecules, and morphology. In: Séret B, Sire J Y ed. Proceedings of the 5th Indo-Pacific Fish Conference, Nouméa 1997. Société Française d’Ichtyologie, Paris, p. 149–164.Google Scholar
  14. Collette B B. 2003. Family Scombridae Rafinisque 1815-mackerels, tunas, and bonitos. In: California Academy Sciences ed. Annotated Checklist of Fishes No. 19. San Francisco, California. 28p.Google Scholar
  15. Collette B B, Chao L N. 1975. Systematic and morphology of the bonitos (Sarda) and their relatives (Scombridae, Sardini). Fish. Bull., 73: 516–625.Google Scholar
  16. Collette B B, Nauen C E. 1983. Scombrids of the world: An annotated and illustrated catalogue of tunas, mackereis, bonitos and related species known to date. FAO species catalogue, vol. 2. FAO Fish Synop, 125: 1–137.Google Scholar
  17. Collette B B, Reeb C, Block B A. 2001. Systematics of the tunas and mackereis (Scombridae). In: Block B A, Stevens E D ed. Tuna: Physiology, Ecology, and Evolution. Academic Press, San Diego, California. p.1–33.CrossRefGoogle Scholar
  18. Collette B B, Russo J L. 1979. An introduction to the Spanish mackereis, genus Scomberomorus. In: Nakamura E L, Bullis H R J ed. Proceedings of Colloquium on the Spanish and King Mackerei Resources of the Gulf of Mexico. Marine Fish Community, Gulf States, p.3–16.Google Scholar
  19. Espineira M, González-Lavín N, Vieites J M, Santaclara F J. 2009. Development of a method for the identification of scombroid and common Substitute species in seafood products by FINS. Food Chem., 117: 698–704.CrossRefGoogle Scholar
  20. Felsenstein J. 1985. Confidence limits on a phylogenies: an approach using the bootstrap. Evolution, 39: 783–791.CrossRefGoogle Scholar
  21. Fessler J L, Westneat M W. 2007. Molecular phylogenetics of the butterflyfishes (Chaetodontidae): Taxonomy and biogeography of a global coral reef fish family. Mol. Phylogenet. Evol., 45: 50–68.CrossRefGoogle Scholar
  22. Gojobori T. 1983. Codon Substitution in evolution and the “Saturation” of synonymous changes. Genetics, 105: 1011–1027.Google Scholar
  23. Heads M. 2005. Towards a panbiogeography of the seas. Biol. J. Linn. Soc., 84: 675–723.CrossRefGoogle Scholar
  24. Hewitt G 2000. The genetic legacy of the Quaternary ice ages. Nature, 405: 907–913.CrossRefGoogle Scholar
  25. Holder M, Lewis P O. 2003. Phylogeny estimation: traditional and Bayesian approaches. Genetics, 4: 275–284.Google Scholar
  26. Hrbek T, Meyer A. 2003. Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). J. Evolution. Biol., 16: 17–36.CrossRefGoogle Scholar
  27. Infante C, Blanco E, Zuasti E, Crespo A, Manchado M. 2007. Phylogenetic differentiation between Atlantic Scomber colias and Pacific Scomber japonicus based on nuclear DNA sequences. Genetica, 130: 1–8.CrossRefGoogle Scholar
  28. Johns G C, Avise J C 1998. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol. Biol. Evol., 15: 1 481–1 490.Google Scholar
  29. Kimura M. 1980. A simple method for estimating evolutionary rate of base Substitution through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111–120.CrossRefGoogle Scholar
  30. Kishino H, Thorne J L, Bruno W J. 2001. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol. Biol. Evol., 18: 352–361.Google Scholar
  31. Kocher T D, Thomas W K, Meyer A, Edwards S V. 1989. Dynamic of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. P. Natl. Acad. Sci. USA, 86: 6196–6 200.CrossRefGoogle Scholar
  32. Kumar S, Tamura K, Nei M. 2004. MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform., 5: 150–163.CrossRefGoogle Scholar
  33. Matsui T. 1967. Review of the mackerei genera Scomber and Rastrelliger with description of a new species of Rastrelliger. Copeia, 1967: 71–83.CrossRefGoogle Scholar
  34. Meyer A. 1993. Phylogenetic relationship and evolutionary processes in east African cichlid fishes. Trends Ecol. Evol., 8: 279–284.CrossRefGoogle Scholar
  35. Minegishi Y, Aoyama J, Inoue J G, Miya M, Nishida M, Tsukamoto K. 2005. Molecular phylogeny and evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genome sequences. Mol. Phylogenet. Evol., 34: 134–146.CrossRefGoogle Scholar
  36. Miya M, Takeshima H, Endo H, Ishiguro N B, Inoue J G, Mukai T, Satoh T P, Yamaguchi M, Kawaguchi A, Mabuchi K. 2003. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol. Phylogenet. Evol., 26: 121–138.CrossRefGoogle Scholar
  37. Nylander J A A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala.Google Scholar
  38. Nylander J A A, Ronquist F, Huelsenbeck J P, Nieves-Aldrey J L. 2004. Bayesian phylogenetic analysis of combined data. Syst. Biol., 53: 47–67.CrossRefGoogle Scholar
  39. Ohdachi S, Masuda R, Abe H, Adachi J, Dokuchaev N E, Haukisalmi V, Yoshida M C. 1997. Phylogeny of Eurasian soricine shrews (Insectivora, Mammalia) inferred from the mitochondrial cytochrome b gene sequences. Zool. Sci., 14: 527–532.CrossRefGoogle Scholar
  40. Posada D, Buckley T R. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike Information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol., 53: 793–808.CrossRefGoogle Scholar
  41. Posada D, Crandall K. 1998. Modeltest: testing the model of DNA Substitution. Bioinformatics, 14: 817–818.CrossRefGoogle Scholar
  42. Rodriguez-Trelles F, Tarrio R, Ayala F J. 2002. A methodological bias toward overestimation of molecular evolutionary time scales. P. Natl. Acad. Sci. USA, 99: 8112–8115.CrossRefGoogle Scholar
  43. Rögl F. 1999. Mediterranean and paratethys. Facts and hypothesis of an Oligocene to Miocene paleogeography (short overview). Geol. Carpath., 50: 339–349.Google Scholar
  44. Rohde K, Hayward C J. 2000. Oceanic barriers as indicated by scombrid fishes and their parasites. Int. I. Parasitol., 30: 579–583.CrossRefGoogle Scholar
  45. Ronquist F, Huelsenbeck J P. 2003. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1 572–1 574.CrossRefGoogle Scholar
  46. Rozas J, Sánchez-DelBarrio J C, Messeguer X, Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19: 2496–2497.CrossRefGoogle Scholar
  47. Sambrook J, Russell D W. 2001. Molecular Cloning: a Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York. 2 344p.Google Scholar
  48. Schneider S, Roessli D, Excoffier L. 2000. Arlequin Version 2.0: A Software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva.Google Scholar
  49. Scoles D R, Collette B B, Graves J E. 1998. Global phylogeography of mackereis of the genus Scomber. Fish. Bull, 96: 823–842.Google Scholar
  50. Smith A B, Peterson K J. 2002. Dating the time of origin of major clades: molecular clocks and the fossil record. Annu. Rev. Earth. PL Sc, 30: 65–88.CrossRefGoogle Scholar
  51. Strugnell J, Norman M, Jackson J, Drummond A J, Cooper A. 2005. Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Mol. Phylogenet. Evol., 37: 426–441.CrossRefGoogle Scholar
  52. Swofford D L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  53. Thorne J L, Kishino H. 2002. Divergence time and evolutionary rate estimation with multilocus data. Syst. Biol., 51: 689–702.CrossRefGoogle Scholar
  54. Tzeng C H, Chen C S, Tang P C, Chiu T S. 2009. Microsatellite and mitochondrial haplotype differentiation in blue mackerei (Scomber australasicus) from the western North Pacific. ICES J. Mar. Sci., 66: 816–825.CrossRefGoogle Scholar
  55. Vrielynck B, Odin G S, Dercourt J. 1997. Miocene palaeogeography of the Tethys Ocean; potential global correlations in the Mediterranean. In: Montanari A, Odin G, Coccioni R ed. Miocene Stratigraphy: An Integrated Approach. Elsevier Science, Amsterdam, p. 157–165.Google Scholar
  56. Ward R D, Zemlak T S, Innes B H, Last P R, Hebert P D N. 2005. DNA barcoding Australia’s fish species. Philos. T. Roy. Soc. B., 360: 1 847–1 857.CrossRefGoogle Scholar
  57. Wood A R, Apte S, MacAvoy E S, Gardner J P A. 2007. A molecular phylogeny of the marine mussei genus Perna (Bivalvia: Mytilidae) based on nuclear (ITS1&2) and mitochondrial (COI) DNA sequences. Mol. Phylogenet. Evol., 44: 685–698.CrossRefGoogle Scholar
  58. Xiao W H, Zhang Y P, Liu H Z. 2001. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Mol. Phylogenet. Evol., 18: 163–173.CrossRefGoogle Scholar
  59. Yang Z, Yoder A D. 2003. Comparison of likelihood and Bayesian methods for estimating divergence times using multiple gene loci and calibration points, with application to a radiation of cute-looking mouse lemur species. Syst. Biol., 52: 705–716.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2011

Authors and Affiliations

  • Jiao Cheng (程娇)
    • 1
  • Tianxiang Gao (高天翔)
    • 1
  • Zhenqing Miao (苗振清)
    • 2
  • Takashi Yanagimoto
    • 3
  1. 1.Ocean University of ChinaQingdaoChina
  2. 2.Zhejiang Ocean UniversityZhoushanChina
  3. 3.National Research Institute of Far Seas FisheriesYokohamaJapan

Personalised recommendations