Chinese Journal of Oceanology and Limnology

, Volume 28, Issue 4, pp 802–807 | Cite as

Construction and characterization of a normalized cDNA library of Nannochloropsis oculata (Eustigmatophyceae)

  • Jianzhong Yu (俞建中)
  • Xiaolei Ma (马晓磊)
  • Kehou Pan (潘克厚)Email author
  • Guanpin Yang (杨官品)
  • Wengong Yu (于文功)


We constructed and characterized a normalized cDNA library of Nannochloropsis oculata CS-179, and obtained 905 nonredundant sequences (NRSs) ranging from 431–1 756 bp in length. Among them, 496 were very similar to nonredundant ones in the GenBank (E ≤1.0e-05), and 349 ESTs had significant hits with the clusters of eukaryotic orthologous groups (KOG). Bases G and/or C at the third position of codons of 14 amino acid residues suggested a strong bias in the conserved domain of 362 NRSs (>60%). We also identified the unigenes encoding phosphorus and nitrogen transporters, suggesting that N. oculata could efficiently transport and metabolize phosphorus and nitrogen, and recognized the unigenes that involved in biosynthesis and storage of both fatty acids and polyunsaturated fatty acids (PUFAs), which will facilitate the demonstration of eicosapentaenoic acid (EPA) biosynthesis pathway of N. oculata. In comparison with the original cDNA library, the normalized library significantly increased the efficiencies of random sequencing and rarely expressed genes discovering, and decreased the frequency of abundant gene sequences.


Eustigmatophyceae Nannochloropsis oculata normalized cDNA library expressed sequence tag 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adl S M, Simpson A G, Farmer M A, Andersen R A, Anderson O R, Barta J R, Bowser S S, Brugerolle G, Fensome R A, Fredericq S, James T Y, Karpov S, Kugrens P, Krug J, Lane C. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol., 52: 399–451.CrossRefGoogle Scholar
  2. Becker B, Feja N, Melkonian M. 2001. Analysis of expressed sequence tags (ESTs) from the scaly green flagellate Scherffelia dubia Pascher emend. Melkonian et Preisig. Protist., 152: 139–147.CrossRefGoogle Scholar
  3. Carninci P, Shibata Y, Hayatsu N, Sugahara Y, Shibata K, Itoh M, Konno H, Okazaki Y, Muramatsu M, Hayashizaki Y. 2000. Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome. Res., 10: 1 617–1 630.CrossRefGoogle Scholar
  4. Chen H L, Li S S, Huang R, Tsai H J. 2008. Conditional Production of a Functional Fish Growth Hormone in the Transgenic Line of Nannochloropsis oculata (Eustigmatophyceae). J. Phycol., 44(3): 768–776.CrossRefGoogle Scholar
  5. Chini Zittelli G, Rodolfi L, Tredici M R. 2004. Industrial Production of Microalgal Cell-Mass and Secondary Products-Species of High Potential. In: Richmond A ed. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science Ltd., Oxford. p. 298–303.Google Scholar
  6. Chini Zittelli G, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici M R. 1999. Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J. Biotechnol., 70: 299–312.CrossRefGoogle Scholar
  7. Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv., 25: 294–306.CrossRefGoogle Scholar
  8. Chomczynski P, Sacchi N, 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162: 156–159.CrossRefGoogle Scholar
  9. Ewing B, Green P. 1998a. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res., 8: 186–194.Google Scholar
  10. Ewing B, Hillier L, Wendl M C, Green P. 1998b. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome. Res., 8: 175–185.Google Scholar
  11. Fawleya K P, Fawleya M W. 2007. Observations on the diversity and ecology of freshwater Nannochloropsis (Eustigmatophyceae), with descriptions of new taxa. Protist., 158: 325–336.CrossRefGoogle Scholar
  12. Fogg G E. 1995. Some comments on picoplankton and its importance in the pelagic ecosystem. Aquat. Microb. Ecol., 9: 33–39.CrossRefGoogle Scholar
  13. Grossman A R. 2005. Paths toward algal genomics. Plant Physiol., 137: 410–27.CrossRefGoogle Scholar
  14. Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula conferraceae Cleve. Can. J. Microbiol., 8: 229–239.CrossRefGoogle Scholar
  15. Hackett J D, Scheetz T E, Yoon H S, Soares M B, Bonaldo M F, Casavant T L, Bhattacharya D. 2005. Insights into a dinoflagellate genome through expressed sequence tag analysis. BMC Genomics, 6: 80.CrossRefGoogle Scholar
  16. Hawkins R L, Nakamura M. 1999. Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr. Microbiol., 38: 335–341.CrossRefGoogle Scholar
  17. Hibberd D J. 1981. Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xantophyceae). Bot. J. Linnean Soc., 82: 93–99.CrossRefGoogle Scholar
  18. Hu H H, Gao K S. 2006. Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol. Lett., 28: 987–992.CrossRefGoogle Scholar
  19. Karlson B, Potter D, Kuylenstierna M, Andersen R A. 1996. Ultrastructure, pigment composition, and 18S rRNA gene sequence for Nannochloropsis granulata sp. nov. (Monodopsidaceae, Eustigmatophyceae), a marine ultraplankter isolated from the Skagerrak, northeast Atlantic Ocean. Phycologia, 35: 253–260.Google Scholar
  20. La Claire II J W. 2006. Analysis of expressed sequence tags from the harmful alga, Prymnesium parvum (Prymnesiophyceae, Haptophyta). Mar. Biotech., 8: 534–546.CrossRefGoogle Scholar
  21. Lanier W, Moustafa A, Bhattacharya D, Comeron J M. 2008. EST analysis of Ostreococcus lucimarinus, the most compact eukaryotic genome, shows an excess of introns in highly expressed genes. PLoS ONE., 3(5): e2171.CrossRefGoogle Scholar
  22. Lavens P, Sorgeloos P. 1996. Manual on the production and use of life food for aquaculture. FAO Fish. Tech. Pap., 361: 7–42.Google Scholar
  23. Leggat W, Hoegh-Guldberg O, Dove S, Yellowlees D. 2007. Analysis of an EST library from the dinoflagellate (Symbiodinium sp.) symbiont of reef-building corals. J. Phycol., 43(5): 1 010–1 021.CrossRefGoogle Scholar
  24. Lidie K B, Ryan J C, Barbier M, Van Dolah F M. 2005. Gene expression in Florida red tide dinoflagellate Karenia brevis: analysis of an expressed sequence tag library and development of a DNA microarray. Mar. Biotechnol., 7: 481–493.CrossRefGoogle Scholar
  25. Marchler-Bauer A, Panchenko A R, Shoemaker B A, Thiessen P A, Geer L Y, Bryant S H. 2002. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucl. Acids Res., 30: 281–283.CrossRefGoogle Scholar
  26. Sharp P M, Tuohy T M F, Mosurski K R. 1986. Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucl. Acids Res., 14: 5 125–5 143.Google Scholar
  27. Shi J, Pan K H, Yu J Z, Zhu B H, Yang G P, Yu W G, Zhang X Y. 2008. Analysis of expressed sequence tags from the marine microalga Nannochloropsis oculata (Eustigmatophyceae). J. Phycol., 44: 99–102.CrossRefGoogle Scholar
  28. Stephen F A, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman J D. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res., 25: 3 389–3 402.Google Scholar
  29. Sukenik A. 1999. Production of EPA by marine eustigmatophyte Nannochloropsis. In: Cohen, E. ed. Chemicals from Microalgae. Taylor and Francis, London. p. 41–56.Google Scholar
  30. Tonon T, Harvey D, Larson T R, Graham I A. 2002. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochem., 61: 15–24.CrossRefGoogle Scholar
  31. Volkman J K, Brown M R, Dunston G A, Jeffre S W. 1993. The biochemical composition of marine microalgae from the class Eustigmatophyceae. J. Phycol., 29: 69–78.CrossRefGoogle Scholar
  32. Wahlund T M, Hadaegh A R, Clark R, Nguyen B, Fanelli M, Read B A. 2004. Analysis of expressed sequence tags from calcifying cells of marine coccolithophorid (Emiliania huxleyi). Mar. Biotechnol., 6: 278–290.CrossRefGoogle Scholar
  33. Whittle S, Casselton P. 1975. The chloroplast pigments of the algal class Eustigmatophyceae and Xanthophyceae. I. Eustigmatophyceae. Br. Phycol. J., 10: 179–191.CrossRefGoogle Scholar
  34. Zhang Z X, Zhang F D, Tang W H, Pi Y J, Zheng Y L. 2005. Construction and characterization of normalized cDNA Library of maize inbred M017 from multiple tissues and developmental stages. Mol. Biol., 39: 198–206.CrossRefGoogle Scholar
  35. Zhulidov P A, Bogdanova E A, Shcheglov A S, Vagner L L, Khaspekov G L, Kozhemyako V B, Matz M V, Meleshke-Vitch E, Moroz L L, Lukyanov S A. 2004. Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucl. Acids Res., 32: e37.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Jianzhong Yu (俞建中)
    • 1
    • 3
  • Xiaolei Ma (马晓磊)
    • 1
  • Kehou Pan (潘克厚)
    • 1
    Email author
  • Guanpin Yang (杨官品)
    • 2
  • Wengong Yu (于文功)
    • 3
  1. 1.Ministry of Education Key Laboratory of Marine CultureOcean University of ChinaQingdaoChina
  2. 2.College of Marine Life SciencesOcean University of ChinaQingdaoChina
  3. 3.Ministry of Education Key Laboratory of Marine DrugsOcean University of ChinaQingdaoChina

Personalised recommendations