Chinese Journal of Oceanology and Limnology

, Volume 28, Issue 6, pp 1266–1274 | Cite as

DNA barcoding discriminates Pampus minor (Liu et al., 1998) from Pampus species

  • Enmian Guo (郭恩棉)
  • Yuan Liu (刘媛)
  • Jing Liu (刘静)
  • Zhaoxia Cui (崔朝霞)
Biology

Abstract

Although Pampus minor has been classified as a new species, it still remains controversial. Was used a DNA barcoding technique based on homologous sequence analysis of the16S and COI genes to clarify the confusion over the identification of this species. Among 12 individuals whose genetic distance was 0.002, two haplotypes were found. According to the 16S sequences, the genetic distances ranged from 0.121 to 0.133 between P. minor and other Pampus species. Although the same the genetic distance between the two P. minor haplotypes was generated using COI sequences, the haplotype of Pm22-23, Pm28, and Pm32-33 was the same as that of Pci EF607462 and EF607466, while the haplotype of Pm24-27 and Pm29-31 was the same as that of Pci EF607461 and EF607463-65. In addition, the genetic distance ranged only from 0.002 to 0.005 between P. minor and Pa EF607460 and EF607458. Apart from this, the interspecies genetic distances varied from 0.135 to 0.143 between P. minor and other Pampus species according to the COI sequences. Phylogenetic trees, using combined 16S and COI data, strongly support the viewpoint that all the P. minor individuals form one clade that is in a sister position to Pampus sp. individuals (EU357803, FJ434342-FJ434343, and FJ652423-FJ652427).

Keyword

Pampus minor COI 16S DNA barcoding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnaud S, Bonhomme F, Borsa P. 1999. Mitochondrial DNA analysis of the genetic relationships among populations of scad mackerel (Decapterus macarellus, D. macrosoma, D. russelli) in South-East Asia. Marine Biology, 135: 699–707.CrossRefGoogle Scholar
  2. Ballard J W O, de Whitlock M C. 2004. The incomplete natural history of mitochondria. Mol. Ecol., 13: 729–744.CrossRefGoogle Scholar
  3. Bensasson D, de Zhang D X, Hartl D L, Hewitt G M. 2001. Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends. Ecol. Evol., 16: 314–321.CrossRefGoogle Scholar
  4. Cheng Q T. 1962. Stromateidae, the Fishes of South China Sea. Science Press, Beijing, China. p.759–763. (in Chinese)Google Scholar
  5. Cui Z X, de Liu Y, Liu J, Luan W S. 2010. Molecular identification of Pampus fishes (Perciformes, Stromateidae). Ichthyological Research, 57: 32–39.CrossRefGoogle Scholar
  6. Doiuchi R, de Nakabo T. 2006. Molecular phylogeny of the stromateoid fishes (Teleostei: Perciformes) inferred from mitochondrial DNA sequences and compared with morphology-based hypotheses. Mol. Phyt. Evol., 39: 111–123.CrossRefGoogle Scholar
  7. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783–791.CrossRefGoogle Scholar
  8. Gao T X, de Li J, Wang Q Y, Liu J X. 2003. Sequence analysis on mitochondrial 16S rRNA gene in Fenneropenaeus chinensis. J. Fishery Sciences of China, 10: 59–62.Google Scholar
  9. Grant W S, de Bowen B W. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lesson for conservation. J. Hered, 89: 415–426.CrossRefGoogle Scholar
  10. Hajibabaei M, Janzen DH, Burns J M, Hallwachs W, Hebert P D N. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci., 103: 968–971.CrossRefGoogle Scholar
  11. Hajibabaei M, de Singer G A C, Hebert P D N, Hickey D A. 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics, 23: 167–172.CrossRefGoogle Scholar
  12. Hebert P D N, de Cywinska A, Ball S L, Waard J R. 2003a. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. (B), 270: 313–321.CrossRefGoogle Scholar
  13. Hebert P D N, de Ratnasingham S, Dewaard J R. 2003b. Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species. Proc. R. Soc. Lond. B (Suppl.), 270: 96–99.CrossRefGoogle Scholar
  14. Huelsenbeck P, de Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754–755.CrossRefGoogle Scholar
  15. Kochzius M, de Nölte M, Weber H, Silkenbeumer N, Hjörleifsdottir S, Hreggvidsson G O, Marteinsson V, Kappel K, Planes S, Tinti F, Magoulas A, Garcia Vazquez E, Turan C, Hervet C, Campo Falgueras D, Antoniou A, Landi M, Blohm D. 2008. DNA microarrays for identifying fishes. Mar. Biotechnol., 10: 207–217.CrossRefGoogle Scholar
  16. Kong X Y, Yu Z N, Liu Y J, Gao T X, Wu Y F. 2001. Comparative study of mitochondrial COI gene fragment between Chinese mitten crab (Eriocheir sinensis) and Japanese mitten crab (Eriocheir japonica). Journal of Ocean University of Qingdao, 31: 861–866. (in Chinese with English abstract)Google Scholar
  17. Lakra W S, de Goswami M, Gopalakrishnan A. 2009. Molecular identification and phylogenetic relationships of seven Indian Sciaenids (Pisces: Perciformes, Sciaenidae) based on 16S rRNA and cytochrome c oxidase subunit I mitochondrial genes. Mol. Biol. Rep., 36: 831–839.CrossRefGoogle Scholar
  18. Liu J, de Li C S. 1998. A new pomfret species, Pampus minor sp. nov. (Stromateidae) from Chinese waters. Chin. J. Oceanol. Limnol., 16(4): 280–285.Google Scholar
  19. Liu J, de Li C S, Li X S. 2002. Studies on Chinese pomfret fishes of the genus Pampus (Pisces: Stromateidae). Studia Marina Sinica, 44: 240–252. (in Chinese with English abstract)Google Scholar
  20. Mai W J, Xie Z Y, Zhang L P, Shen Q, Hu C Q. 2009. Sequence Comparison and Phylogenetic Analysis of mtDNA 16S rRNA and COI gene Fragments in the Chinese Shrimp, Fennerpenaeus chinensis and Five Species of Shrimp. Natural Science Journal of Hainan University, 27: 15–23. (in Chinese with English abstract)Google Scholar
  21. Martínez-Navarro E M, de Galián J, Serrano J. 2005. Phylogeny and molecular evolution of the tribe Harpalini (Coleoptera, Carabidae) inferred from mitochondrial cytochrome-oxidase I. Molec. Phylogen. Evol., 35: 127–146.CrossRefGoogle Scholar
  22. Neigel J, de Domingo A, Stake J. 2007. DNA barcoding as a tool for coral reef conservation. Coral Reefs, 26: 487–499.CrossRefGoogle Scholar
  23. Palumbi S R. 1996. Nucleic acids II: the polymerase chain reaction. In: Hillis D M, Moritz C, Mable B K ed. Molecular Systematics, Sinauer & Associates Inc., Sunderland, Massachusetts, p. 205–247.Google Scholar
  24. Pfunder M, de Holzgang O, Frey J E. 2004. Development of microarray-based diagnostics of voles and shrews for use in biodiversity monitoring studies, and evaluation of mitochondrial cytochrome oxidase I vs. cytochrome b as genetic markers. Mol. Ecol., 13: 1 277–1 286.CrossRefGoogle Scholar
  25. Posada D, de Crandall K A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics. 14: 817–818.CrossRefGoogle Scholar
  26. Rozas J, de Sánchez-DelBarrio J C, Messeguer X, Rozas R. 2003. DnaSP, DNA polymorphism analyses by coalescent and other methods. Bioinformatics, 19: 2 496–2 497.CrossRefGoogle Scholar
  27. Sambrook J, de Russell D W. 2001. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  28. Sparks J S. 2004. Molecular phylogeny and biogeography of the Malagasy and South Asian cichlids (Teleostei: Perciformes: Cichlidae). Molec. Phylogen Evol., 30: 599–614.CrossRefGoogle Scholar
  29. Stoeckle M. 2003. Taxonomy, DNA, and the barcode of life. Bio-Science, 53: 2–3.Google Scholar
  30. Swofford D L. 2002. PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.10. Sinauer Associates, Sunderland, Mass.Google Scholar
  31. Tamura K, de Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24: 1 596–1 599.CrossRefGoogle Scholar
  32. Thompson J D, de Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25: 4 876–4 882.CrossRefGoogle Scholar
  33. Tjensvoll K, de Glover K A, Nylund A. 2006. Sequence variation in four mitochondrial genes of the salmon louse Lepeophtheirus salmonis. Dis. Aquat. Organ., 68: 251–259.CrossRefGoogle Scholar
  34. Ursvik A, de Breines R, Christiansen J S, Fevolden S E, Coucheron D H, Johansen S D. 2007. A mitogenomic approach to the taxonomy of pollocks: Theragra chalcogramma and T. wnnmarchica represent one single species. BMC Evol. Biol., 7: 87.CrossRefGoogle Scholar
  35. Ward R D, de Zemlak T S, Innes B H, Last P R, Hebert P D N. 2005. DNA barcoding Australia’s fish species. Phil. Trans. R. Soc. B., 360: 1 847–1 857.CrossRefGoogle Scholar
  36. Xiao J H, de Xiao H, Huang D W. 2004. DNA barcoding: new approach of biological taxonomy. Acta Zoologica Sinica, 50: 852–855. (in Chinese with English abstract)Google Scholar
  37. Zhang F Y, Ma L B, Shi Z H, Ma C Y. 2008. Sequence variation and molecular phylogeny of mitochondrial COI gene segments from three pomfret species. Journal of Fishery Sciences of China, 15: 392–398. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Enmian Guo (郭恩棉)
    • 1
  • Yuan Liu (刘媛)
    • 2
  • Jing Liu (刘静)
    • 2
  • Zhaoxia Cui (崔朝霞)
    • 2
  1. 1.Qingdao Agriculture UniversityQingdaoChina
  2. 2.Institute of OceanologyChinese Academy of SciencesQingdaoChina

Personalised recommendations