Effects of temperature and irradiance on early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta)

  • Xiao Li (李晓)
  • Peng Zhao (赵鹏)
  • Gaoge Wang (王高歌)
  • Dapeng Li (李大鹏)
  • Jicheng Wang (王继成)
  • Delin Duan (段德麟)
Biology

Abstract

Chondrus is a type of commercially produced red seaweed that widely used for food and carrageen extraction. Although the natural life history of the alga had been well understood, the factors influencing development of the tetraspore and carpospore remain poorly understood. In the perspective of seedling resources, the regulation of early development is crucial for the seedling nursing; therefore, it is necessary to understand the physiological influences during its early development. In this study, we studied the effects of temperature and irradiance on the early development of Chondrus ocellatus Holm under laboratory conditions. The released tetraspores and carpospores were cultivated at different temperatures (10–28°C) and irradiances (10, 60 μmol photons m−2s−1) with a photoperiod of 12L:12D. The results indicate that both tetraspores and carpospores are tolerant to temperatures of 10–25°C, and have the highest relative growth rate at 20°C. Irradiance variances influenced the growth of the discoid crusts, and the influence was more significant with increasing temperature; 60 μmol photons m−2s−1 was more suitable than 10 μmol photons m−2s−1. The optimum temperature and irradiance for the development of seedlings was 20°C and 60 μmol photons m−2s−1, respectively.

Keyword

Chondrus ocellatus temperature irradiance early development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouzon Z L, Ouriques L C, Oliveira E C. 2005. Ultrastructure of tetraspore germination in the agar-producing seaweed Gelidium floridanum (Gelidiales, Rhodophyta). Phycologia, 44: 409–415.CrossRefGoogle Scholar
  2. Bouzon Z L, Ouriques L C, Oliveira E C. 2006. Spore adhesion and cell wall formation in Gelidium floridanum (Rhodophyta, Gelidiales). J. Appl. Phycol., 18: 287–294.CrossRefGoogle Scholar
  3. Burns R L, Mathieson A C. 1972. Ecological studies of economic red algae. II. Culture studies of Chondrus crispus Stackhouse and Gigartina stellata (Stackhouse) batters. J. Exper. Mar. Bio. Ecol., 8(1): 1–6.CrossRefGoogle Scholar
  4. Chen M Q, Ren G Z. 1985. The development process of sporelings of Gracilaria verrucosa (Hudson) Papenfuss. Oceanologia et Limnologia Sinica, 16(3): 181–187.Google Scholar
  5. Enright C T, Craigie J S. 1981. Effects of temperature and irradiance on growth and respiration of Chondrus crispus Stackhouse. In: Levring T ed. Proceedings of the International Seaweed Symposium. Walter de Gruyte, Berlin. p. 271–276.Google Scholar
  6. Fonck E, Martínez R, Vásquez J, Bulboa C. 2008. Factors that affect the re-attachment of Chondracanthus chamissoi (Rhodophyta, Gigartinales) thalli. J. Appl. Phycol., 20: 311–314.CrossRefGoogle Scholar
  7. Hori T. 1993. An Illustrated Atlas of the Life History of Algae. Vol. 2. In: Brown and Red Algae. Uchdia Roka-kuho Publishing Co., Ltd., Tokyo. Japan.Google Scholar
  8. Ji Y K, Guo J. 1992. The effect of temperature on the growth and development of Chondrus ocellatus. Journal of Dalian Fisheries College, 7: 32–37.Google Scholar
  9. Jones W E. 1956. Effect of spore coalescence in the early development of Gracilaria verrucosa (Huds.) Papenfuss. Nature, 178: 426–427.CrossRefGoogle Scholar
  10. Kim Y S, Choi H G, Nam K W. 2006. Phenology of Chondrus ocellatus in Cheongsapo near Busan. Korean J. Appl. Phycol., 18: 551–556.CrossRefGoogle Scholar
  11. Komiyama T, Sasamoto M. 1957. Studies on the propagation of Gracilaria verrucosa (Huds.) Papenfuss I. On the settling of the spores and development of the early stage. Report of the Investigations on the Ariake Sea, 4: 25–34.Google Scholar
  12. McLachlan J L. 1991. General principles of on-shore cultivation of seaweeds: effects of light on production. Hydrobiologia, 221(1): 125–135.CrossRefGoogle Scholar
  13. Noda H. 1990. Antitumor activity of marine algae. Proc Int. Seaweed Symp., 13: 577–584.Google Scholar
  14. Provasoli L. 1968. Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A eds. Cultures and Collection of Algae. Japanese Society of Plant Physiology, Tokyo. p. 63–77.Google Scholar
  15. Santelices B, Hormazabal M, Correa J, Flores V. 2004. The fate of overgrown germlings in coalescing Rhodophyta. Phycologia, 43(4): 346–352.CrossRefGoogle Scholar
  16. Taylor A R A, Chen L C M. 1994. Chondrus Stackhouse. In: Akatsuka I ed. Biology of Economic Algae. SPB Academic Publishing, Hague. p. 35–76.Google Scholar
  17. Vera C, Lobos P, Romo H. 2008. Gametophyte-sporophyte coalescence in populations of the intertidal carrageenophyte Mazzaella laminarioides (Rhodophyta). J. Appl. Phycol., 20: 883–887.CrossRefGoogle Scholar
  18. Wang A H, Wang J C, Duan D L. 2006. Early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta). Chin. J. Oceanol. Limnol., 24(2): 129–133.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Xiao Li (李晓)
    • 1
    • 2
  • Peng Zhao (赵鹏)
    • 3
  • Gaoge Wang (王高歌)
    • 3
  • Dapeng Li (李大鹏)
    • 1
  • Jicheng Wang (王继成)
    • 1
  • Delin Duan (段德麟)
    • 1
  1. 1.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina
  3. 3.Ocean University of ChinaQingdaoChina

Personalised recommendations