Chinese Journal of Oceanology and Limnology

, Volume 28, Issue 5, pp 1112–1118 | Cite as

Factors influencing the climatological mixed layer depth in the South China Sea: numerical simulations

  • Conghui Fan (范聪慧)Email author
  • Juanjuan Wang (王娟娟)
  • Jinbao Song (宋金宝)


The mixed layer depth (MLD) in the upper ocean is an important physical parameter for describing the upper ocean mixed layer. We analyzed several major factors influencing the climatological mixed layer depth (CMLD), and established a numerical simulation in the South China Sea (SCS) using the Regional Ocean Model System (ROMS) with a high-resolution (1/12°×1/12°) grid nesting method and 50 vertical layers. Several ideal numerical experiments were tested by modifying the existing sea surface boundary conditions. Especially, we analyzed the sensitivity of the results simulated for the CMLD with factors of sea surface wind stress (SSWS), sea surface net heat flux (SSNHF), and the difference between evaporation and precipitation (DEP). The result shows that of the three factors that change the depth of the CMLD, SSWS is in the first place, when ignoring the impact of SSWS, CMLD will change by 26% on average, and its effect is always to deepen the CMLD; the next comes SSNHF (13%) for deepening the CMLD in October to January and shallowing the CMLD in February to September; and the DEP comes in the third (only 2%). Moreover, we analyzed the temporal and spatial characteristics of CMLD and compared the simulation result with the ARGO observational data. The results indicate that ROMS is applicable for studying CMLD in the SCS area.


mixed layer depth (MLD) South China Sea (SCS) wind stress net heat flux evaporation precipitation regional ocean model system (ROMS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander M A, Penland C. 1996. Variability in a mixed layer model of the upper ocean driven b stochastic atmospheric surface fluxes. Journal of Climate, 9(10): 2 424–2 442.CrossRefGoogle Scholar
  2. Amante C, Eakins B W. 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 ppGoogle Scholar
  3. Chen D, Busalacchi A J, Rothstein L M. 1994. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacific Ocean. J. Geophys. Res., 99(C10): 20 345–20 359.CrossRefGoogle Scholar
  4. da Silva A C, Young, Levitus S. 1994. Atlas of Surface Marine Data 1994, Volume 1: Algorithms and Procedures. Technical Report 6, U.S. Department of Commerce, NOAA, NESDIS.Google Scholar
  5. de Boyer Montégut C, Madec G, Fischer A S, Lazar A, Iudicone D. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys Res., 109(C12): C12003.1–C12003.20Google Scholar
  6. di Lorenzo E. 2003. Seasonal dynamics of the surface circulation in the southern California Current System. Deep-Sea Res. Part II, 50(14–16): 2 371–2 388.Google Scholar
  7. Dinniman M S, Klinck J M, Smith Jr W O. 2003. Cross shelf exchange in a model of the Ross Sea circulation and biogeochemistry. Deep-Sea Res. Part II, 50(22–26): 3 103–3 120.Google Scholar
  8. Gill A E, Niller P P. 1973. The theory of the seasonal variability in the ocean. Deep-Sea Res., 20(2): 141–177.Google Scholar
  9. Haidvogel D B, Arango H G, Hedstrom K, Beckmann A, Malanotte-Rizzoli P, Shchepetkin A F. 2000. Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32(3–4): 239–281.CrossRefGoogle Scholar
  10. Kara A B, Rochford P A, Hurlburt Harley E. 2000. An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105(C7): 16 803–16 822.Google Scholar
  11. Kelly K A, Qiu B. 1995. Heat flux estimates for the western North Atlantic, Part I, Assimilation of satellite data into a mixed layer model. J. Phys. Oceanogr., 25(10): 2 344–2 360.Google Scholar
  12. Large W G, McWilliams J C, Doney S C. 1994. Oceanic Vertical Mixing: A Review and a Model with a Nonlocal Boundary Layer Parameterization. Rev. Geophys., 32(4): 363–403.CrossRefGoogle Scholar
  13. Large W G, Yeager S G. 2004. Diurnal to Decadal Global Forcing for Ocean and Sea-Ice Models: The data Sets and Flux Climatologies, Technical Report TN-460+STR, NCAR. 105p.Google Scholar
  14. Liu Q Y, Sun J L, Jia X J. 2002. Numerical simulation and experiments of the upper mixed layer in the northern south china sea in spring. Oceanologia et Limnologia Sinica, 33(5): 526–525. (in Chinese with English abstract)Google Scholar
  15. Marchesiello P, McWilliams J C, Shchepetkin A. 2003. Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr., 33(4): 753–783.CrossRefGoogle Scholar
  16. Miller J R. 1976. The salinity effect in a mixed layer ocean model. J. Phys. Oceanogr., 6(1): 29–35.CrossRefGoogle Scholar
  17. Monterey G, Levitus S. 1997. Seasonal Variability of Mixed Layer Depth for the World Ocean. U.S. Gov. Printing Office, Wash. DC. 96p.Google Scholar
  18. Ohlmann J C, Siegel D A, Gautier C. 1996. Ocean mixed layer radiant heating and solar penetration: a global analysis. J. Climate, 9(10): 2 265–2 280.CrossRefGoogle Scholar
  19. Price J F, Weller R A, Pinkel R. 1986. Diurnal cycling: observations and models of the upper ocean response to diurnal heating, Cooling and wind mixing. J. Geophys. Res., 91(C7): 8 411–8 427.CrossRefGoogle Scholar
  20. Sprintall J, Tomczak M. 1992. Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97(C6): 7 305–7 316.Google Scholar
  21. Suga T, Motoki K, Aoki Y, Macdonald A M. 2004. The North Pacific climatology of winter mixed layer and mode waters. J. Phys. Oceanogr., 34(1): 3–22.CrossRefGoogle Scholar
  22. Thomson R E, Fine I V. 2003. Estimating mixed layer depth for oceanic profile data. J. Atmos. Oceanic. Technol., 20(2): 319–329.CrossRefGoogle Scholar
  23. Udaya Bhaskar T V S, Swain D, Ravichandran M. 2006. Inferring mixed-layer depth variability from Argo observations in the western Indian Ocean. Journal of Marine Research, 64(3): 393–406.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Conghui Fan (范聪慧)
    • 1
    • 2
    Email author
  • Juanjuan Wang (王娟娟)
    • 1
    • 2
    • 3
  • Jinbao Song (宋金宝)
    • 1
    • 2
  1. 1.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Key Laboratory of Ocean Circulation and Waves (KLOCAW)Chinese Academy of SciencesQingdaoChina
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations