Chinese Journal of Oceanology and Limnology

, Volume 27, Issue 3, pp 502–512 | Cite as

Characterization of a new lectin involved in the protoplast regeneration of Bryopsis hypnoides

  • Jianfeng Niu (牛建峰)
  • Guangce Wang (王广策)
  • Fang Lü (吕芳)
  • Baicheng Zhou (周百成)
  • Guang Peng (彭光)
Biology

Abstract

A group of coenocytic marine algae differs from higher plants, whose totipotency depends on an intact cell (or protoplast). Instead, this alga is able to aggregate its extruded protoplasm in sea water and generate new mature individuals. It is thought that lectins play a key role in the aggregation process. We purified a lectin associated with the aggregation of cell organelles in Bryopsis hypnoides. The lectin was ca. 27 kDa with a pI between pH 5 and pH 6. The absence of carbohydrate suggested that the lectin was not a glycoprotein. The hemagglutinating activity (HA) of the lectin was not dependent on the presence of divalent cations and was inhibited by N-Acetylgalactosamine, N-Acetylglucosamine, and the glycoprotein bovine submaxillary mucin. The lectin preferentially agglutinated Gram-negative bacterium. The HA of this lectin was stable between pH 4 to pH 10. Cell organelles outside the cytoplasm were agglutinated by the addition of lectin solution (0.5 mg ml−1). Our results suggest that the regeneration of B. hypnoides is mediated by this lectin. We also demonstrated that the formation of cell organelle aggregates was inhibited by nigericin in natural seawater (pH 8.0). Given that nigericin dissipates proton gradients across the membrane, we hypothesize that the aggregation of cell organelles was proton-gradient dependent.

Keyword

Bryopsis hypnoides lectin hemagglutinating cell organelle aggregation regeneration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belogortseva N I, Molchanova V I, Kurika A V, Skobun A S, Glazkova V E. 1998. Isolation and characterization of new GalNAc/Gal specific lectin from the sea mussel Crenomytilus grayanus. Comp. Biochem. Physiol., 119: 45–50.Google Scholar
  2. Benevides N M B, Holanda M L, Melo F R, Freitas A L P, Sampaio A H. 1998. Purification and partial characterisation of the lectin from the marine red alga Enantiocladia duperreyi (C. agardh) Falkenberg. Botanica Marina., 41: 521–525.CrossRefGoogle Scholar
  3. Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.CrossRefGoogle Scholar
  4. Cominetti M R, Marques M R F, Lorenzini D M, Löfgren S E, Daffre S, Barracco M A. 2002. Characterization and partial purification of a lectin from the hemolymph of the white shrimp Litopenaeus schmitti. Dev. Comp. Immunol., 26: 715–721.CrossRefGoogle Scholar
  5. Dai C J, Wang G Z, He J F, Li S J, Huang H Y. 2006. Purification and characterization of lectin from humoral fluids of Charybdis feriatus. Chinese Journal of Oceanology and Limnology, 24: 390–394.CrossRefGoogle Scholar
  6. Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Biochem., 28: 350–356.Google Scholar
  7. Halbig D, Hou B, Freudl R, Sprenger G A, Klõsgen R B. 1999. Bacterial protein carrying twin-R signal peptides are specifically targeted by the ΔpH-dependent transport machinery of the thylakoid membrane system. FEBS Lett., 447: 95–98.CrossRefGoogle Scholar
  8. Herrler G, Reuter G, Rott R, Klenk H D, Schauer R. 1987. N-acetyl-9-O-acetylneuraminic acid, the receptor determinant for influenza C virus, is a differentiation marker on chicken erythrocytes. Biol. Chem. Hoppe. Seyler., 368: 451–454.Google Scholar
  9. Hori K, Miyazawa K, Ito K. 1987. A mitogenic agglutinin from the red alga Carpopeltis flabelata. Phytochemistry, 26: 1 335–1 338.CrossRefGoogle Scholar
  10. Hori K, Miyazawa K, Ito K. 1990. Some common properties of lectins from marine algae. Hydrobiologia, 204/205: 561–566.CrossRefGoogle Scholar
  11. Joshi J P. 1987. Putative polyadenylation signals in nuclear genes of higher plants: a comparison and analysis. Nucleic Acids Res., 15: 9 627–9 640.Google Scholar
  12. Kim G H, Klotchkova T A, Kang Y M. 2001. Life without a cell membrane: regeneration of protoplasts from disintegrated cells of the marine green alga Bryopsis plumose. J. Cell Sci., 114: 2 009–2 014.Google Scholar
  13. Kim G H, Klotchkova T A, West J A. 2002. From protoplasm to swarmer: regeneration of protoplasts from disintegrated cells of the multicellular marine green alga Microdictyon umbilicatum (Chlorophyta). J. Phycol., 38: 174–178.CrossRefGoogle Scholar
  14. Klotchkova T A, Kim G H. 2006. Purification and characterization of a lectin, Bryohealin, involved in the protoplast formation of a marine green alga Bryopsis plumose. J. Phycol., 42: 86–95.CrossRefGoogle Scholar
  15. Klotchkova T A, Chah O K, West J A, Kim G H. 2003. Cytochemical and ultrastructural studies on protoplast formation from disintegrated cells of a marine green alga Chaetomorpha aerea (Chlorophyta). Eur. J. Phycol., 38: 205–216.CrossRefGoogle Scholar
  16. Kobayashi K, Kanaizuka Y. 1985. Reunification of sub-cellular fractions of Bryopsis into viable cells. Plant Sci., 40: 129–135.CrossRefGoogle Scholar
  17. Laemmli U K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685.CrossRefGoogle Scholar
  18. Mariani-Colombo P, Vannini G L, Mares D. 1980. A cytochemical approach to the wound repair mechanism in Udotea petiolata (Siphonales). Protoplasma, 104: 105–117.CrossRefGoogle Scholar
  19. O’Neil R M, La Claine J W. 1984. Mechanical wounding induces the formation of extensive coated membranes in giant cell. Science, 255: 331–333.CrossRefGoogle Scholar
  20. Pak J Y, Solorzano C, Arai M, Nitta T. 1991. Two distinct steps for spontaneous generation of subprotoplasts from a disintegrated Bryopsis cell. Plant Physiol., 96: 819–825.CrossRefGoogle Scholar
  21. Peltier J B, Friso G, Kalume D E, Roepstorff P, Nilsson F, Adamska I, Wijk K J. 2000. Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell, 12: 319–342.CrossRefGoogle Scholar
  22. Peumans W J, W J N VAN Damme. 1995. Lectin as plant defense proteins. Plant Physiol., 109: 347–352.CrossRefGoogle Scholar
  23. Rice K G, 1997. Glycoconjugate-medicated drug targeting. In:H. J. Gabius and S. Gabius, eds. Glycosciences: Status and Perspectives. Weinheim: Chapman & Hall, London. p. 471–483.Google Scholar
  24. Rogers D J, Hori K. 1993. Marine algal lectins: new developments. Hydrobiologia, 260/261: 589–593.CrossRefGoogle Scholar
  25. Sabine M, Ivan K, Constanze W, Herrmann R G, Klõsgen R B. 2001. The rieske Fe/S protein of the cytochrome b6/f complex in chloroplasts. J. Biol. Chem., 46: 42 761–42 766.Google Scholar
  26. Schauer R, Casalsst J, Corfield A P, Veh R W. 1988. Subcellular site of the biosynthesis of O-acetylated sialic acids in bovine submandibular gland. Glycocon. J., 5: 257–270.CrossRefGoogle Scholar
  27. Sharon N, Lis H. 1989. Lectins as cell recognition molecules. Science, 177: 949–959.CrossRefGoogle Scholar
  28. Shinji H, Masahide K, Kentaro M, Yoshio T, Shigehisa H. 2000. Multiplicity, structures, and endocrine and exocrine natures of eel fucose-binding lectins. J. Biol. Chem., 275: 33 151–33 157.Google Scholar
  29. Shiomi K, Yamanaka H, Kikuchi T. 1981. Purification and physicochemical properties of a hemagglutinin (GVA-1) in the red alga Gracilaria verrucosa. Bulletin of the Japanese Society of Scientific Fisheries, 47: 1 079–1 084.Google Scholar
  30. Sun J, Wang L, Wang B J, Guo Z Y, Liu M, Jiang K Y, Luo Z Y. 2007. Purification and characterisation of a natural Lectin from the serum of the shrimp Litopenaeus vannamei. Fish Shellfish Immun., 23: 292–299.CrossRefGoogle Scholar
  31. Tatewaki M, Nagata K. 1970. Surviving protoplasts in vitro and their development in Bryopsis. J. Phycol., 6: 401–403.Google Scholar
  32. Ueda R, Sugeta H, Degudei Y. 1991. Naturally occurring agglutinin in the hemolymph of Japanese coastal crustacean. Nippon Suisan Gakk., 57: 69–78.Google Scholar
  33. Walker M B, Roy L M, Coleman E, Voelker R, Barkan A. 1999. The maize tha4 gene functions in sec-independent protein transport in chloroplasts and is related to hcf106, tatA, and tatB. J. Cell. Biol., 147: 267–276.CrossRefGoogle Scholar
  34. Wang G C, Tseng C K. 2006. Culturing the segments of Bryopsis hypnoides Lamouroux thalli regenerated from protoplasts aggregation. J. Integrat. Plant. Biol., 48: 190–196.CrossRefGoogle Scholar
  35. Yao C L, Wu C G, Xiang J H, Dong B. 2005. Molecular cloning and response to laminarin stimulation of arginine kinase in haemolymph in Chinese shrimp, Fennero-penaeus chinensis. Fish Shellfish Immun., 19: 317–329.CrossRefGoogle Scholar
  36. Ye N H, Wang G C, Wang F Z, Zeng C K. 2005. Formation and growth of Bryopsis hypnoides Lamouroux Regenerated from its protoplasts. J. Integrat. Plant. Biol., 47: 856–862.CrossRefGoogle Scholar
  37. Yoon K S, Lee K P, Klotchkova T A, Kim G H. 2008. Molecular characterization of the lectin, Bryohealin, involved in protoplast regeneration of the marine alga Bryopsis plumosa (Chlorophyta). J. Phycol., 44: 103–112.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Jianfeng Niu (牛建峰)
    • 1
  • Guangce Wang (王广策)
    • 1
    • 2
  • Fang Lü (吕芳)
    • 1
    • 3
  • Baicheng Zhou (周百成)
    • 1
  • Guang Peng (彭光)
    • 1
  1. 1.Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.College of Marine Science and EngineeringTianjin University of Science and TechnologyTianjinChina
  3. 3.The Graduate School of Chinese Academy of SciencesBeijingChina

Personalised recommendations