Chinese Journal of Oceanology and Limnology

, Volume 25, Issue 2, pp 227–234

A sulfotransferase specific to N-21 of gonyautoxin 2/3 from crude enzyme extraction of toxic dinoflagellate Alexandrium tamarense CI01

  • Wang Dazhi  (王大志)
  • Zhang Shugang  (张树刚)
  • Hong Huasheng  (洪华生)
Article

Abstract

Sulfotransferase (ST) is the first enzyme discovered in association with paralytic shellfish poisoning (PSP) toxin biosynthesis in toxic dinoflagellates. This study investigates the ST activity in crude enzyme extraction of a toxic dinoflagellate species, Alexandrium tamarense CI01. The results show that crude enzyme can transfer a sulfate group from 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to N-21 in the carbamoyl group of gonyautoxin 2/3 (GTX2/3) to produce C1/C2, but is inactive toward STX to produce GTX5. The crude enzyme is optimally active at pH 6.0 and 15°C. The activity is enhanced by Co2+, Mg2+, Mn2+ and Ca2+ individually, but is inhibited by Cu2+. Moreover, the activity shows no difference when various sulfur compounds are used as sulfate donors. These results demonstrate that the ST specific to GTX2/3 is present in the cells of A. tamarense CI01 and is involved in PSP toxin biosynthesis. In addition, the ST from different dinoflagellates is species-specific, which explains well the various biosynthesis pathways of the PSP toxins in toxic dinoflagellates.

Key words

Alexandrium tamarense CI01 crude enzyme sulfotransferase paralytic shellfish poisoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. M., D. M. Kulis, J. J. Sullivan and S. Hall, 1990. Toxin composition variations in one isolate of the dinoflagellate Alexandrium fundyense. Toxicon 28: 885–893.CrossRefGoogle Scholar
  2. Boczar, B. A., M. A. Beitler, J. Liston, J. J. Sullivan and C. A. Cattolico, 1988. Paralytic shellfish toxins in Protogonyaulax tamarensis and Protogonyaulax catenella in axenic culture. Plant. Physiol. 88: 1 285–1 290.Google Scholar
  3. Boyer, G. L., J. J. Sullivan, R. J. Anderson, P. J. Harrison and F. J. R. Taylor, 1987. Effects of nutrient limitation on toxin production and composition in the marine dinoflagellate Protogonyaulax tamarensis. Mar. Biol. 96: 123–128.CrossRefGoogle Scholar
  4. Cembella, A. D., 1998. Ecophysiology and metabolism of paralytic shellfish toxins in marine microalgae. In: DM Anderson, AD Cembella and GM Hallegraeff ed., Physiological Ecology of Harmful Blooms. Springer-Verlag, Berlin Heidelberg, p. 381–403.Google Scholar
  5. Flynn, K. J., K. J. Jones and K. J. Flynn, 1996. Comparisons among species of Alexandrium grown in nitrogen-or phosphorus-limiting batch culture. Mar. Biol. 126: 9–18.CrossRefGoogle Scholar
  6. Hall, S., 1982. Toxins and Toxicity of Protogonyaulax from the Northeast Pacific. Ph.D. Thesis. University of Alaska.Google Scholar
  7. Hamasaki, K., M. Horie, A. Tokimitsu, A. Toda and S. Taguchi, 2001. Variability in toxicity of the dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, western Japan, as a reflection of changing environmental conditions. J. Plank. Res. 23: 271–278.CrossRefGoogle Scholar
  8. Hwang, D. F. and Y. H. Lu, 2001. Influence of environmental and nutritional factor on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum. Toxicon 38: 1 491–1 503.Google Scholar
  9. Kodama, M., 2000. Ecology, classification and origin. In: LM Botana ed., Seafood and Freshwater Toxins: Pharmacology, Physiology and Detection. Marcel Dekker, Inc. USA, p.125–150.Google Scholar
  10. Matsui, M. and H. Homma, 1994. Biochemistry and molecular biology of drug-metabolizing sulfotransferase. Int. J. Biochem. 26: 1 234–1 247.Google Scholar
  11. Oshima, Y., 1995a. Chemical and enzymatic transformation of paralytic shellfish toxins in marine organisms. In: P Lassus ed., Harmful Marine Algal Blooms, Lavoisier, New York, p. 475–480.Google Scholar
  12. Oshima, Y., 1995b. Post-column derivatization liquid chromatographic method for paralytic shellfish toxins. J. AOAC Int. 78: 528–532.Google Scholar
  13. Oshima, Y., S. J. Blackburn and G. M. Hallegraeff, 1993. Comparative study on paralytic shellfish toxin profiles of the dinoflagellate Gymnodinium catenatum from three different countries. Mar. Biol. 116: 471–476.CrossRefGoogle Scholar
  14. Parkhill, J. P. and A. D. Cembella, 1999. The effects of salinity, light and inorganic nitrogen on the growth and toxigenicity of the marine dinoflagellate Alexandrium tamarense. J. Plank. Res. 21: 939–955.CrossRefGoogle Scholar
  15. Plumley, F. G., 1997. Marine algal toxins: biochemistry, genetics, and molecular biology. Limnol. Oceanogr. 42: 1 240–1 251.CrossRefGoogle Scholar
  16. Plumley, F. G., 2001. Purification of an enzyme involved in saxitoxin synthesis. J. Phycol. 37: 926–928.CrossRefGoogle Scholar
  17. Saidha, T. and J. A. Schiff, 1994. Purification and properties of a phenol sulfotransferase from Euglena using L-tyrosine as substrate. J. Biochem. 298: 45–50.Google Scholar
  18. Sako, Y., T. Yoshida, A. Uchida, O. Arakawa, T. Noguchi and Y. Ishida, 2001. Purification and characterization of a sulfotransferase specific to N-21 of saxitoxin and gonyautoxin 2+3 from the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). J. Phycol. 37: 1 044–1 051.CrossRefGoogle Scholar
  19. Shimizu, Y., 1979. Dinoflagellate toxin. In: PJ Scheuer ed, Marine Natural products-Chemical and Biological Perspectives. Academic Press, New York, p. 1–42.Google Scholar
  20. Shimizu, Y., 1993. Microalgal metabolite. Chem. Rev. 93: 1 685–1 698.CrossRefGoogle Scholar
  21. Shimizu, Y., 1996. Microalgal metabolites-a new perspective. Annu. Rev. Microbiol. 50: 431–465.CrossRefGoogle Scholar
  22. Taroncher-Oldenbugr, G., D. Kulis and D. M. Anderson, 1997. Toxin variability during the cell cycle of the dinoflagellate Alexandrium fundyense. Limnol. Oceanogr. 42: 1 177–1 188.Google Scholar
  23. Wang, D. Z and D. P. H. Hsieh, 2001. Dynamics of C2 toxin and chlorophyll-a formation in the dinoflagellate Alexandrium tamarense during large-scale cultivation. Toxicon 39: 1 533–1 536.CrossRefGoogle Scholar
  24. Wang D Z, AYD Ho and DPH Hsieh, 2002. Production of C2 toxin by Alexandrium tamarense CI01 using different culture methods. J. Appl. Phycol. 14:461–468.CrossRefGoogle Scholar
  25. Wang, D. Z., T. J. Jiang and D. P. H. Hsieh, 2005. Toxin composition variations in cultures of Alexandrium species isolated from the coastal waters of Southern China. Harmful Algae 4: 109–121.CrossRefGoogle Scholar
  26. Yoshida, T., Y. Sako, A. Uchida, Y. Ishida, O. Arakawa and T. Noguchi, 1996. Purification and properties of paralytic shellfish poisoning toxins sulfotransferase from toxic dinoflagellate Gymnodinium catenatum. In: T Yasumoto, Y Oshima and Y Fukuyo eds., Harmful and Toxic Algal Blooms. IOC (UNESCO), Paris, p.499–502.Google Scholar
  27. Yoshida, T., Y. Sako, T. Kakutani, A. Fujii, A. Uchida, Y. Ishida, O. Arakawaand and T. Noguchi, 1998. Comparative study of two sulfotransferase for sulfation to N-21 of Gymnodinium catenatum and Alexandrium catenella toxins. In: B. Reguera, J. Blanco, M. L. Fernandez and T. Wyatt eds., Harmful Algae. Xunta de Galicia and IOC of UNESCO, Vigo, p. 366–369.Google Scholar

Copyright information

© Science Press 2007

Authors and Affiliations

  • Wang Dazhi  (王大志)
    • 1
  • Zhang Shugang  (张树刚)
    • 1
  • Hong Huasheng  (洪华生)
    • 1
  1. 1.State Key Laboratory of Marine Environmental Science/Environmental Science Research CenterXiamen UniversityXiamenChina

Personalised recommendations