Applied Physics B

, Volume 74, Issue 4–5, pp 355–361

Laser wake field acceleration: the highly non-linear broken-wave regime

  • A. Pukhov
  • J. Meyer-ter-Vehn


We use three-dimensional particle-in-cell simulations to study laser wake field acceleration (LWFA) at highly relativistic laser intensities. We observe ultra-short electron bunches emerging from laser wake fields driven above the wave-breaking threshold by few-cycle laser pulses shorter than the plasma wavelength. We find a new regime in which the laser wake takes the shape of a solitary plasma cavity. It traps background electrons continuously and accelerates them. We show that 12-J, 33-fs laser pulses may produce bunches of 3×1010 electrons with energy sharply peaked around 300 MeV. These electrons emerge as low-emittance beams from plasma layers just 700-μm thick. We also address a regime intermediate between direct laser acceleration and LWFA, when the laser-pulse duration is comparable with the plasma period.

PACS: 52.38.Kd; 52.35.-g; 41.75.Ht 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • A. Pukhov
    • 1
  • J. Meyer-ter-Vehn
    • 2
  1. 1.Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, GermanyDE
  2. 2.Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, GermanyDE

Personalised recommendations