Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Goos–Hänchen shift for elegant Hermite–Gauss light beams impinging on dielectric surfaces coated with a monolayer of graphene

  • 21 Accesses

Abstract

The Goos–Hänchen (GH) shift for the reflection of the elegant Hermite–Gauss beams (EHGBs) impinging on single-layer graphene-coated surfaces is theoretically studied. The factors influencing the GH shift, including the incident angle, the refractive index and the orders m and n of \(H_{mn}\) EHGBs are analyzed, respectively. It is shown that with the increase of the order m, the variations of the GH shift of different EHGBs are greatly enhanced. Thus, the GH shift of the EHGBs can be manipulated by choosing the order m.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 2003)

  2. 2.

    F. Goos, H. Hänchen, Ann. Phys. 435, 383–392 (1943)

  3. 3.

    F. Goos, H. Hänchen, Ann. Phys. 436, 333–346 (1947)

  4. 4.

    F. Goos, H. Lindberg-Hänchen, Ann. Phys. 440, 251–252 (1949)

  5. 5.

    K. Artmann, Ann. Phys. 437, 87–102 (1948)

  6. 6.

    C. Imbert, Phys. Rev. D 5, 787–796 (1972)

  7. 7.

    F.I. Fedorov, Dokl. Akad. Nauk SSSR 105, 465–467 (1955)

  8. 8.

    C. Luo, J. Guo, Q. Wang, Y. Xiang, S. Wen, Opt. Express 21, 10430–10439 (2013)

  9. 9.

    F. Liu, J. Xu, G. Song, Y. Yang, J. Opt. Soc. Am. B 30, 1167–1172 (2013)

  10. 10.

    I.V. Shadrivov, A.A. Zharov, Y.S. Kivshar, Appl. Phys. Lett. 83, 2713–2715 (2003)

  11. 11.

    Y. Xu, C.T. Chan, H. Chen, Sci. Rep. 5, 8681 (2015)

  12. 12.

    H. Wang, X. Zhang, J. Opt. Soc. Am. B 29, 1218–1225 (2012)

  13. 13.

    O. Emile, T. Galstyan, A. Le Floch, F. Bretenaker, Phys. Rev. Lett. 75, 1511–1513 (1995)

  14. 14.

    B.M. Jost, A.-A.R. Al-Rashed, B.E.A. Saleh, Phys. Rev. Lett. 81, 2233–2235 (1998)

  15. 15.

    J. Huang, Z. Duan, H.Y. Ling, W. Zhang, Phys. Rev. A 77, 063608 (2008)

  16. 16.

    R. Briers, O. Leroy, G. Shkerdin, J. Acoust. Soc. Am. 108, 1622–1630 (2000)

  17. 17.

    X. Yin, L. Hesselink, Z. Liu, N. Fang, X. Zhang, Appl. Phys. Lett. 85, 372–374 (2004)

  18. 18.

    A. Farmani, M. Miri, M.H. Sheikhi, J. Opt. Soc. Am. B 34, 1097–1106 (2017)

  19. 19.

    R.H. Renard, J. Opt. Soc. Am. 54, 1190–1197 (1964)

  20. 20.

    V.K. Ignatovich, Phys. Lett. A 322, 36–46 (2004)

  21. 21.

    C.W.J. Beenakker, R.A. Sepkhanov, A.R. Akhmerov, J. Tworzydło, Phys. Rev. Lett. 102, 146804 (2009)

  22. 22.

    C.-F. Li, Phys. Lett. A 76, 013811 (2007)

  23. 23.

    A. Aiello, J.P. Woerdman, Opt. Lett. 33, 1437–1439 (2008)

  24. 24.

    A. Aiello, J. P. Woerdman, arXiv:0903.3730v2 (2009)

  25. 25.

    A. Aiello, New J. Phys. 14, 013058 (2012)

  26. 26.

    M.P. Araúújo, Stefano De Leo, G.G. Maia, Phys. Rev. A 93, 023801 (2016)

  27. 27.

    D. Golla, S.D. Gupta, Pramana 76, 603–612 (2011)

  28. 28.

    C. Prajapati, D. Ranganathan, J. Opt. Soc. Am. A 29, 1377–1382 (2012)

  29. 29.

    K.N. Pichugin, D.N. Maksimov, A.F. Sadreev, J. Opt. Soc. Am. A 35, 1324–1329 (2018)

  30. 30.

    X. Guo, X. Liu, W. Zhu, M. Gao, W. Long, J. Yu, H. Zheng, H. Guan, Y. Luo, H. Lu, J. Zhang, Z. Chen, Opt. Commun. 445, 5–9 (2019)

  31. 31.

    A.M. Nugrowati, W.G. Stam, J.P. Woerdman, Opt. Express 20, 27429–27441 (2012)

  32. 32.

    A.M. Nugrowati, J.P. Woerdman, Opt. Commun. 308, 253–255 (2013)

  33. 33.

    M. Ornigotti, A. Aiello, J. Opt. 17, 065608 (2015)

  34. 34.

    A. Aiello, J.P. Woerdman, Opt. Lett. 36, 543–545 (2011)

  35. 35.

    P. Chamorro-Posada, J. Sánchez-Curto, A.B. Aceves, G.S. McDonald, Opt. Lett. 39, 1378–1381 (2014)

  36. 36.

    M. Ornigotti, Opt. Lett. 43, 1411–1414 (2018)

  37. 37.

    C. Zhai, S. Zhang, Optik 184, 234–240 (2019)

  38. 38.

    K.Y. Bliokh, I.V. Shadrivov, Y.S. Kivshar, Opt. Lett. 34, 389–391 (2009)

  39. 39.

    Z. Xiao, H. Luo, S. Wen, Phys. Rev. A 85, 053822 (2012)

  40. 40.

    A.E. Siegman, J. Opt. Soc. Am. 63, 1093–1094 (1973)

  41. 41.

    S. Saghafi, C.J.R. Sheppard, J. Mod. Opt. 45, 1999–2009 (1998)

  42. 42.

    D. Deng, H. Guo, X. Chen, H.J. Kong, J. Opt. A-Pure Appl. Opt. 5, 489–494 (2003)

  43. 43.

    D. Deng, Opt. Commun. 259, 409–414 (2006)

  44. 44.

    D. Deng, Q. Guo, Opt. Lett. 33, 1225–1227 (2008)

  45. 45.

    L.A. Falkovsky, J. Phys. Conf. Ser. 129, 012004 (2008)

  46. 46.

    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109–162 (2009)

  47. 47.

    A.W.W. Ludwig, M.P.A. Fisher, R. Shankar, G. Grinstein, Phys. Rev. B 50, 7526–7552 (1994)

  48. 48.

    M. Cheng, P. Fu, X. Chen, X. Zeng, S. Feng, R. Chen, J. Opt. Soc. Am. B 31, 2325–2329 (2014)

  49. 49.

    X. Li, P. Wang, F. Xing, X.D. Chen, Z.B. Liu, J.G. Tian, Opt. Lett. 39(19), 5574–5577 (2014)

  50. 50.

    S. Grosche, M. Ornigotti, A. Szameit, Opt. Express 23, 30195–30203 (2015)

  51. 51.

    N.A.F. Zambale, J.L.B. Sagisi, N.P. Hermosa, Opt. Commun. 433, 25–29 (2019)

  52. 52.

    W. Wu, S. Chen, C. Mi, W. Zhang, H. Luo, S. Wen, Phys. Rev. A 96, 043814 (2017)

  53. 53.

    S. Chen, C. Mi, L. Cai, M. Liu, H. Luo, S. Wen, Carbon 149, 604 (2019)

  54. 54.

    X. Zhou, X. Ling, H. Luo, S. Wen, Appl. Phys. Lett. 101, 251602 (2012)

  55. 55.

    A.V. Nalitov, G. Malpuech, H. Terças, D.D. Solnyshkov, Phys. Rev. Lett. 114, 026803 (2015)

  56. 56.

    W.J.M. Kort-Kamp, N.A. Sinitsyn, D.A.R. Dalvit, Phys. Rev. B 93, 081410 (2016)

  57. 57.

    L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, S. Wen, Phys. Rev. A 95, 013809 (2017)

  58. 58.

    T. Tang, J. Li, L. Luo, P. Sun, J. Yao, Adv. Opt. Mater. 6, 1701212 (2018)

  59. 59.

    X. Zhou, S. Chen, Y. Liu, H. Luo, S. Wen, Proc. SPIE 9167, 91670I (2014)

  60. 60.

    X. Zhou, Z. Xiao, H. Luo, S. Wen, Phys. Rev. A 85, 043809 (2012)

  61. 61.

    X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, S. Wen, Phys. Rev. A 88, 053840 (2013)

  62. 62.

    W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen, X. Yin, Opt. Express 26, 23705–23713 (2018)

  63. 63.

    M. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012)

  64. 64.

    T. Zhan, X. Shi, Y. Dai, X. Liu, J. Zi, J. Phys.-Condes. Matter 25, 215301 (2013)

  65. 65.

    H.-S. Yang, S.-Y. Choi, S.-H. Hyun, H.-H. Park, J.-K. Hong, J. Non-Cryst, Solids 221, 151–156 (1997)

  66. 66.

    D.R. Rolison, B. Dunn, J. Mater. Chem. 11, 963–980 (2001)

  67. 67.

    M. Schneider, A. Baiker, Catal. Rev.-Sci. Eng. 37, 515–556 (1995)

  68. 68.

    J.H. Rouse, G.S. Ferguson, J. Am. Chem. Soc. 125, 15529–15536 (2003)

  69. 69.

    I. Adachi, T. Sumiyoshi, K. Hayashi, N. Iida, R. Enomoto, K. Tsukada, R. Suda, S. Matsumoto, K. Natori, M. Yokoyama, H. Yokogawa, Nucl. Instr. Meth. Phys. Res. A 355, 390–398 (1995)

Download references

Acknowledgements

National Natural Science Foundation of China (11775083 and 11374108).

Author information

Correspondence to Dongmei Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhen, W., Deng, D. Goos–Hänchen shift for elegant Hermite–Gauss light beams impinging on dielectric surfaces coated with a monolayer of graphene. Appl. Phys. B 126, 35 (2020). https://doi.org/10.1007/s00340-020-7386-6

Download citation