Advertisement

Applied Physics B

, 126:5 | Cite as

An approach of stand-off measuring hardness of tungsten heavy alloys using LIBS

  • Harse Sattar
  • Hai RanEmail author
  • Wu Ding
  • Muhammad Imran
  • Muhammad Amir
  • Hongbin DingEmail author
Regular Paper
  • 31 Downloads

Abstract

Surface hardness and microstructural properties are important parameters of plasma-facing material and play a key role in long pulse operation of fusion reactor. Nowadays, nuclear reactors are facing the problem of change in physical properties especially surface hardness due to dominant extreme conditions. Consequently, it is important to monitor these changes. Laser-induced breakdown spectroscopy (LIBS) has a potential diagnostic ability to monitor in situ surface hardness and their correlation with plasma wall interaction. In this work, the hardness of different tungsten heavy alloy grades is measured by stand-off approach using LIBS. The difference in hardness was attributed to grain size, crystal size, dislocations density and energy band gap (Eg) of materials. These microstructural and electronic structure properties have direct impact on electron temperature in laser-ablated plasma. Plasma electron temperature has been determined using Boltzmann plot method in the range from 1.76 ± 0.01 to 1.90 ± 0.02 eV, while electron density has been derived using Stark broadening spectral profile of (W-I) 429.47 nm line. The obtained direct relation between the ionic to atomic species of (WII/WI) and the material hardness are associated to increase in the value of plasma electron temperature (Te). The energy band gap of these tungsten heavy alloy targets has been observed from 3.24 to 3.59 eV as hardness increases from 314 ± 2.2 to 354 ± 1.1. The results showed that the energy band gap of these targets increases with hardness and have direct relation with plasma electron temperature. Ablation efficiency was also measured as a function of laser irradiance from crater depth analysis. The results showed that average ablation rate is decreased from soft to hard material.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2017YFE0301304, 2017YFA0402501, 2017YFA0402502), the National Natural Science Foundation of China (Nos. 51837008, 11475039, 11405022, 11605023, and 11705020), China Postdoctoral Science Foundation (No. 2018M630285) and Lianoing Provincial Natural Science Foundation of China (No. 20170540153).

References

  1. 1.
    V. Philipps, Tungsten as material for plasma-facing components in fusion devices. J. Nucl. Mater. 415(1), S2–S9 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    A. Loarte, B. Lipschultz, A.S. Kukushkin, G.F. Matthews, P.C. Stangeby, N. Asakura, A. Mahdavi, Power and particle control. Nucl. Fusion 47(6), S203 (2007)CrossRefGoogle Scholar
  3. 3.
    J. Karhunen, A. Hakola, J. Likonen, A. Lissovski, P. Paris, M. Laan, K. Sugiyama, Development of laser-induced breakdown spectroscopy for analyzing deposited layers in ITER. Phys. Scr. 2014(T159), 014067 (2014)CrossRefGoogle Scholar
  4. 4.
    J.N. Brooks, L. El-Guebaly, A. Hassanein, T. Sizyuk, Plasma-facing material alternatives to tungsten. Nucl. Fusion 55(4), 043002 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    N. Farid, D. Zhao, H.Y. Oderji, H. Ding, Cracking and damage behavior of tungsten under ELM’s like energy loads using millisecond laser pulses. J. Nucl. Mater. 463, 241–245 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    S.M. Aberkane, A. Bendib, K. Yahiaoui, S. Boudjemai, S. Abdelli-Messaci, T. Kerdja, M.A. Harith, Correlation between Fe–V–C alloys surface hardness and plasma temperature via LIBS technique. Appl. Surf. Sci. 301, 225–229 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    R. Neu, H. Maier, M. Balden, S. Elgeti, H. Gietl, H. Greuner, I. Zammuto, Investigations on tungsten heavy alloys for use as plasma facing material. Fusion Eng. Des. 124, 450–454 (2017)CrossRefGoogle Scholar
  8. 8.
    P. Lorenzo, M. Miralda, S. Iyengar, S. Melin, E. Noah, Fatigue properties and characterization of tungsten heavy alloys IT180 & D176. Int. J. Refract. Met. Hard Mater. 41, 250–258 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Pasalic, F. Rustempasic, S. Iyengar, S. Melin, E. Noah, Fatigue testing and microstructural characterization of tungsten heavy alloy Densimet 185. Int. J. Refract. Met. Hard Mater. 42, 163–168 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Habainy, S. Iyengar, Y. Lee, Y. Dai, Fatigue behavior of rolled and forged tungsten at 25, 280 and 480 C. J. Nucl. Mater. 465, 438–447 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    C. Li, D. Zhao, Z. Hu, X. Wu, G.N. Luo, J. Hu, H. Ding, Characterization of deuterium retention and co-deposition of fuel with lithium on the divertor tile of EAST using laser induced breakdown spectroscopy. J. Nucl. Mater. 463, 915–918 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    P. Paris, K. Piip, A. Hakola, M. Laan, M. Aints, S. Koivuranta, V. Rohde, Development of laser induced breakdown spectroscopy for studying erosion, deposition, and fuel retention in ASDEX Upgrade. Fusion Eng. Des. 98, 1349–1352 (2015)CrossRefGoogle Scholar
  13. 13.
    T.O. Nagy, U. Pacher, H. Pöhl, W. Kautek, Atomic emission stratigraphy by laser-induced plasma spectroscopy: quantitative depth profiling of metal thin film systems. Appl. Surf. Sci. 302, 189–193 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    R. Hai, N. Farid, D. Zhao, L. Zhang, J. Liu, H. Ding, G.N. Luo, Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental Advanced Superconducting Tokamak. Spectrochim. Acta B. 87, 147–152 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    J. Karhunen, A. Hakola, J. Likonen, A. Lissovski, M. Laan, P. Paris, J.E. Contributors, Applicability of LIBS for in situ monitoring of deposition and retention on the ITER-like wall of JET-comparison to SIMS. J. Nucl. Mater. 463, 931–935 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    R. Hai, X. Wu, Y. Xin, P. Liu, D. Wu, H. Ding, L. Yan, Use of dual-pulse laser-induced breakdown spectroscopy for characterization of the laser cleaning of a first mirror exposed in HL-2A. J. Nucl. Mater. 447(1–3), 9–14 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    S. Wurster, N. Baluc, M. Battabyal, T. Crosby, J. Du, C. García-Rosales, R.J. Kurtz, Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J. Nucl. Mater. 442(1–3), S181–S189 (2013)CrossRefGoogle Scholar
  18. 18.
    J.S. Cowpe, R.D. Moorehead, D. Moser, J.S. Astin, S. Karthikeyan, S.H. Kilcoyne, R.D. Pilkington, Hardness determination of bio-ceramics using laser-induced breakdown spectroscopy. Spectrochim. Acta B. 66(3–4), 290–294 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    K. Tsuyuki, S. Miura, N. Idris, K.H. Kurniawan, T.J. Lie, K. Kagawa, Measurement of concrete strength using the emission intensity ratio between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd:YAG laser-induced plasma. Appl. Spectrosc. 60(1), 61–64 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Z.A. Abdel-Salam, A.H. Galmed, E. Tognoni, M.A. Harith, Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra. Spectrochim. Acta B. 62(12), 1343–1347 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Z.A. Abdel-Salam, Z. Nanjing, D. Anglos, M.A. Harith, Effect of experimental conditions on surface hardness measurements of calcified tissues via LIBS. Appl. Phys. B. 94(1), 141–147 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    T.A. Labutin, A.M. Popov, V.N. Lednev, N.B. Zorov, Correlation between properties of a solid sample and laser-induced plasma parameters. Spectrochim. Acta B. 64(10), 938–949 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    A.H. Galmed, C. Steenkamp, I. Ahmed, A. du Plussis, H. von Bergmann, M.A. Harith, M. Maaza, Using laser-induced breakdown spectroscopy to monitor the surface hardness of titanium samples bombarded by carbon ions. Appl. Phys. B. 124(12), 225 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    S.H. Islam, X.H. Qu, F. Akhtar, P.Z. Feng, X.B. He, Microstructure and tensile properties of tungsten heavy alloys. In: Materials science forum. Trans Tech Publ. http://doi.org/10.4028/www.scientific.net/MSF.534-536.561 (2007)CrossRefGoogle Scholar
  25. 25.
    H. Sattar, L. Sun, I. Muhammad, R. Hai, D. Wu, H. Ding, Effect of parameter setting and spectral normalization approach on study of matrix effect by laser induced breakdown spectroscopy of Ag-Zn binary composites. Plasma Sci. Technol. 21(3), 034019 (2019)ADSCrossRefGoogle Scholar
  26. 26.
    M. Akram, S. Bashir, M.S. Rafique, A. Hayat, K. Mahmood, A. Dawood, M.F. Bashir, Morphological and spectroscopic characterization of laser-ablated tungsten at various laser irradiances. Appl. Phys. A. 119(3), 859–870 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    D. Nishijima, R.P. Doerner, Stark width measurements and Boltzmann plots of WI in nanosecond laser-induced plasmas. J. Phys. D. 48(32), 325201 (2015)CrossRefGoogle Scholar
  28. 28.
    R. McWhirter, in Plasma Diagnostic Techniques, ed. by R.H. Huddlestone, S.L. Leonard (Academic Press, New York, 1965)Google Scholar
  29. 29.
    A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. Fis. 53(5), 18–22 (2007)Google Scholar
  30. 30.
    R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Sol Gel. Sci. Technol. 61(1), 1–7 (2012)CrossRefGoogle Scholar
  31. 31.
    G.A. Wolff, L. Toman, N.J. Field, J.C. Clark, In Halbleiter und Phosphore/Semiconductors and Phosphors/Semiconducteurs et Phosphores. Relationship of Hardness, Energy Gap and Melting Point of Diamond Type and Related Structures. (Vieweg + Teubner Verlag, Wiesbaden, 1958), pp. 463–469CrossRefGoogle Scholar
  32. 32.
    A. Pawbake, R. Waykar, A. Jadhavar, R. Kulkarni, V. Waman, A. Date, S. Jadkar, Wide band gap and conducting tungsten carbide (WC) thin films prepared by hot wire chemical vapor deposition (HW-CVD) method. Mater. Lett. 183, 315–317 (2016)CrossRefGoogle Scholar
  33. 33.
    L.G. Teoh, J. Shieh, W.H. Lai, I.M. Hung, M.H. Hon, Structure and optical properties of mesoporous tungsten oxide. J. Alloys. Compd. 396(1–2), 251–254 (2005)CrossRefGoogle Scholar
  34. 34.
    B. Zheng, G. Jiang, W. Wang, K. Wang, X. Mei, Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser. AIP Adv. 4(3), 031310 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    D. Bigoni, M. Milani, R. Jafer, C. Liberatore, S. Tarazi, L. Antonelli, D. Batani, Influence of mechanical and thermal material properties on laser-produced crater-morphology and their study by focused ion beam & scanning electron microscope imaging. Cal 1, M1 (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of PhysicsDalian University of TechnologyDalianChina
  2. 2.Department of PhysicsThe University of LahoreLahorePakistan

Personalised recommendations