Applied Physics B

, 126:7 | Cite as

Effect of spatial confinement on Pb measurements in soil by femtosecond laser-induced breakdown spectroscopy

  • Shangyong Zhao
  • Xun GaoEmail author
  • Anmin ChenEmail author
  • Jingquan Lin


This study investigates the spatial confinement effect on Pb measurements in soil by femtosecond laser-induced breakdown spectroscopy (fs-LIBS). Spatial confinement within a cylindrical cavity significantly enhanced the intensities of the Pb plasma emission spectrum and the enhancement increased with decreasing diameter of the cylindrical cavity. When the cavity diameter was increased from 3 to 6 mm, the spectral emission enhancement was more delayed and the spatial confinement effect was weakened. The limit of detection (LOD), coefficient of determination (R2), relative standard deviation (RSD), and root mean squared error of cross-validation (RMSECV) were 8.85 ± 0.16 mg/kg, 98.34%, 4.98%, and 0.45%, respectively in the 3 mm diameter cavity and 33.16 ± 1.45 mg/kg, 97.66%, 8.21%, and 0.54%, respectively, in the unconfined measurements. The cylindrical cavity improved the detection sensitivity (as evidenced by the LODs) and the detection accuracy (as evidenced by the RMSECV and RSD values) of fs-LIBS. Overall, the spatial confinement method promises to improve the analytical figures of merit of the fs-LIBS technology.



This research was financially supported by the National Natural Science Foundation of China (61575030), Natural Science Foundation of Jilin province (20180101283JC), and Department of education of Jilin Province (JJKH20190539KJ) and Funds from CUST (Grant no. XJJLG-2017-10). We thank Novella from Enago ( for editing the English text of a draft of this manuscript.


  1. 1.
    G. Kim, Y.G. Yoon, H.A. Kim, H. Cho, K. Park, Spectrochim Acta B 134, 17–24 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    L.B. Guo, X.Y. Li, W. Xiong, X.Y. Zeng, Y.F. Lu, Front Phys-beijing 11, 209–215 (2016)Google Scholar
  3. 3.
    N. Huber, S. Eschlböck-Fuchs, H. Scherndl, J. Heitz, J.D. Pedarnig, Appl. Surf. Sci. 302, 280–285 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    J.J. Choi, S.J. Choi, J.J. Yoh, Appl. Spectrosc. 70, 1411–1419 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    M.Y. Yao, H. Yang, L. Huang, T.B. Chen, G.F. Rao, M.H. Liu, Appl. Optics. 56, 4070–4075 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    D. Anglos, Appl. Spectrosc. 55, 186–205 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Abdel-Salam, S.A. Attala, E. Daoud, M.A. Harith, Dairy. Sci. Technol. 95, 331–340 (2015)CrossRefGoogle Scholar
  8. 8.
    J.L. Gottfried, Appl. Optics. 52, B10–B19 (2013)CrossRefGoogle Scholar
  9. 9.
    G. Céline, P. Fichet, D. Menut, J.L. Lacour, Spectrochim. Acta B 60, 792–804 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    C. Aragón, J. Bengoechea, A. AguileraJ, Spectrochim. Acta B 56, 619–628 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    K.X. Li, W.D. Zhou, Q.M. Shen, Z.J. Ren, B.J. Peng, J. Anal. Atom. Spectrom. 25, 1475–1481 (2010)CrossRefGoogle Scholar
  12. 12.
    K. Ali, M. Tampo, K. Akaoka, M. Miyabe, I. Wakaida, Opt. Express 21, 29755–29768 (2013)CrossRefGoogle Scholar
  13. 13.
    L. Liu, S. Li, X.N. He, X. Huang, C.F. Zhang, L.S. Fan, M.X. Wang, Y.S. Zhou, K. Chen, L. Jiang, J.F. Silvain, Y.F. Lu, Opt. Express 22, 7686–7693 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    R. Sanginés, V. Contreras, H. Sobral, A. Robledo-Martinez, Spectrochim. Acta B 110, 139–145 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    C. Koral, A.D. Giacomo, X L Mao. Zorba V, Russo R E, SPECTROCHIM ACTA B 125, 11–17 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    L.B. Guo, Z.H. Zhu, J.M. Li, Y. Tang, S.S. Tang, Z.Q. Hao, X.Y. Li, Y.F. Lu, X.Y. Zeng, Opt. Express 26, 2634–2642 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    L.B. Guo, B.Y. Zhang, X.N. He, C.M. Li, Y.S. Zhou, T. Wu, J.B. Park, X.Y. Zeng, Y.F. Lu, Opt. Express 20, 1436–1443 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Wang, A.M. Chen, L.Z. Sui, S.Y. Li, X.W. Wang, Y.F. Jiang, X.R. Huang, M.X. Jin, J. Anal. Atom. Spectrom. 31, 1974–1977 (2016)CrossRefGoogle Scholar
  19. 19.
    A.M. Popov, F. Colao, R. Fantoni, J. Anal. Atom. Spectrom. 25, 837–848 (2010)CrossRefGoogle Scholar
  20. 20.
    A.M. Popov, F. Colao, R. Fantoni, J. Anal. Atom. Spectrom. 24, 602–604 (2009)CrossRefGoogle Scholar
  21. 21.
    X.K. Shen, J. Sun, H. Ling, Y.F. Lu, J. Appl. Phys. 102, 093301 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    X. Su, W. Zhou, H. Qian, Opt. Express 22, 28437–28442 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    A.M. Popov, T.A. Labutin, S.M. Zaytsev IV, N.B.Zorov Seliverstova, I.A. Ka’ko, Y.N. Sidorina, I.A. Bugaev, Y.N. Nikolaev, J. Anal. Atom. Spectrom. 29, 1925–1933 (2014)CrossRefGoogle Scholar
  24. 24.
    S.S. Harilal, J. Yeak, B.E. Brumfield, M.C. Phillips, Opt. Express 24, 17941–17949 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    F.C. De Lucia, J.L. Gottfried, A.W. Miziolek, Opt. Express 17, 419–425 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    L. Fornarini, R. Fantoni, F. Colao, A. Santagata, R. Teghil, A. Elhassan, M.A. Harith, J. Phys. Chem. A 113, 14364–14374 (2009)CrossRefGoogle Scholar
  27. 27.
    T.A. Labutin, V.N. Lednev, A.A. Ilyin, A.M. Popov, J. Anal. Atom. Spectrom. 31, 90–118 (2016)CrossRefGoogle Scholar
  28. 28.
    X.W. Wang, A.M. Chen, Y. Wang, D. Zhang, L.Z. Sui, D. Ke, S.Y. Li, Y.F. Jiang, M.X. Jin, Phys. Plasmas 24, 103305 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    X.K. Shen, J. Sun, H. Ling, Y.F. Lu, Appl. Phys. Lett. 91, 081501 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Wang, A.M. Chen, L.Z. Sui, S.Y. Li, X.W. Wang, Y.F. Jiang, X.R. Huang, M.X. Jin, J. Anal. Atom. Spectrom. 31, 1974–1977 (2016)CrossRefGoogle Scholar
  31. 31.
    X. Gao, L. Liu, C. Song, J.Q. Lin, J. Phys. D. Appl. Phys. 48, 175205 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    E. Tognoni, G. Cristoforetti, J. Anal. Atom. Spectrom. 29, 1318–1338 (2014)CrossRefGoogle Scholar
  33. 33.
    D.Y. Ding, P.P. Liang, J.D. Wu, N. Xu, Z.F. Ying, J. Sun, Spectrochim. Acta B 79–80, 44–50 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    J.L. Liu, R. Zhang, X.T. Li, J.J. Chen, J.N. Liu, J. Qiu, X. Gao, J.C. Cui, B.Y. Heshig, Opt. Express 26, 16171–16186 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    R. Yuan, Y. Tang, Z.H. Zhu, Z.Q. Hao, J.M. Li, H.Y. Yu, Y.X. Yu, L.B. Guo, X.Y. Zeng, Y.F. Lu, Anal. Chim. Acta 1064, 11–16 (2019)CrossRefGoogle Scholar
  36. 36.
    L.B. Guo, Z.Q. Hao, M. Shen, W. Xiong, X.N. He, Z.Q. Xie, M. Gao, X.Y. Li, X.Y. Zeng, Y.F. Lu, Opt. Express 21, 18188–18195 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Z. Wang, Z.Y. Hou, S.L. Lui, D. Jiang, J.M. Liu, Z. Li, Opt. Express 20, A1011–A1018 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceChangchun University of Science and TechnologyJilinChina
  2. 2.Ministry of Education Key Laboratory for Cross-Scale Micro and Nano ManufacturingChangchun University of Science and TechnologyChangchunChina
  3. 3.Institute of Atomic and Molecular PhysicsJilin UniversityJilinChina

Personalised recommendations