Advertisement

Applied Physics B

, 125:236 | Cite as

Enhancement characteristics of laser-induced plasma confined by hemispherical cavities in different materials

  • Xiaolong Li
  • Jingge WangEmail author
  • Hehe Li
  • Xinzhong Li
  • Miaomiao Tang
  • Liping Zhang
  • Qi Wang
Article
  • 70 Downloads

Abstract

A hemispherical cavity can be used to improve the sensitivity of laser-induced breakdown spectroscopy by increasing the emission spectra of the plasma. In this work, laser-induced plasma plume images were obtained with and without confinement. The results have confirmed that the reason for the signal enhancement caused by the hemispherical cavity was the reflected shockwave “compressing” effect. The dependence of spectral signal enhancement on the material property of the cavities was investigated. Four cavities in different materials, which include K-resin, aluminum alloy, photosensitive resin and nylon, were used to confine the plasma. It has shown that the material physical properties of the cavities influence the enhancement effect. We found that the main influencing factor was surface roughness of the material. Smoother cavity surfaces induced stronger enhancement effects due to the larger specular reflection component of the reflected shockwave and the more intense subsequent interaction between the plasma and shockwave. The spectral intensities of the characteristic lines approximately doubled with surface roughness values changing from 0.2 to 16.1.

Notes

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (Grant Nos. 11504091, 61775052, 61674052, 31500300).

References

  1. 1.
    A.I. Chernov, M.A. Kozhaev, A. Khramova, A.N. Shaposhnikov, A.R. Prokopov, V.N. Berzhansky, Control of the phase of the magnetization precession excited by circularly polarized femtosecond-laser pulses. Photonics Res. 6, 1079–1083 (2018)CrossRefGoogle Scholar
  2. 2.
    L.L. Yan, Y.Y. Zhang, Z.Y. Tai, P. Zhang, X.F. Zhang, W.G. Guo, S.G. Zhang, H.F. Jiang, Multi-cavity-stabilized ultrastable laser. Chin. Opt. Lett. 16, 121403 (2018)CrossRefADSGoogle Scholar
  3. 3.
    L. Radziemski, D. Cremers, A brief history of laser-induced breakdown spectroscopy From the concept of atoms to LIBS 2012. Spectrochim. Acta Part B Atom. Spectrosc. 87, 3–10 (2013)CrossRefADSGoogle Scholar
  4. 4.
    Galbács and Gábor, A critical review of recent progress in analytical laser-induced breakdown spectroscopy. Anal. Bioanal. Chem. 407, 7537–7562 (2015)CrossRefGoogle Scholar
  5. 5.
    D. Girón, T. Delgado, J. Ruiz, L.M. Cabalin, J.J. Laserna, In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS. Measurement 115, 1–10 (2018)CrossRefGoogle Scholar
  6. 6.
    U.A. Taparli, L. Jacobsen, A. Griesche, K. Michalik, D. Mory, T. Kannengiesser, In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding. Spectroc. Acta Part B Atom. Spectrosc. 139, 50–56 (2018)CrossRefADSGoogle Scholar
  7. 7.
    S. Moncayo, S. Manzoor, J.D. Rosales, J. Anzano, J.O. Caceres, Qualitative and quantitative analysis of milk for the detection of adulteration by Laser Induced Breakdown Spectroscopy (LIBS). Food Chem. 232, 322–328 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Wiens, S. Maurice, J. Lasue, O. Forni, R. Anderson, S. Clegg et al., Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover. Spectrochim. Acta Part B Atom. Spectrosc. 82, 1–27 (2013)CrossRefADSGoogle Scholar
  9. 9.
    D.S. Vogt, K. Rammelkamp, S. Schröder, H.W. Hübers, Molecular emission in laser-induced breakdown spectroscopy an investigation of its suitability for chlorine quantification on Mars. Icarus 302, 470–482 (2018)CrossRefADSGoogle Scholar
  10. 10.
    C. Li, X. Gao, Q. Li, C. Song, J.Q. Lin, Spectral enhancement of laser-induced breakdown spectroscopy in external magnetic field. Plasma Sci. Technol. 17, 919–922 (2015)CrossRefADSGoogle Scholar
  11. 11.
    P. Liu, D. Wu, L. Sun, R. Hai, J. Liu, H. Ding, Magnetic field selective enhancement of Li I lines comparing Li II line in laser ablated lithium plasma at 10(-2) mbar air ambient gas. Spectrochim. Acta Part B Atom. Spectrosc. 137, 77–84 (2017)CrossRefADSGoogle Scholar
  12. 12.
    P.K. Diwakar, S.S. Harilal, J.R. Freeman, A. Hassanein, Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy. Spectrochim. Acta Part B Atom. Spectrosc. 87, 65–73 (2013)CrossRefADSGoogle Scholar
  13. 13.
    E. Tognoni, G. Cristoforetti, Basic mechanisms of signal enhancement in ns double-pulse laser-induced breakdown spectroscopy in a gas environment. J. Anal. At. Spectrom. 29, 1318–1338 (2014)CrossRefGoogle Scholar
  14. 14.
    Z.Y. Hou, Z. Wang, J.M. Liu, W.D. Ni, Z. Li, Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy. Opt. Express 22, 12909–12914 (2014)CrossRefADSGoogle Scholar
  15. 15.
    Y.T. Fu, Z.Y. Hou, Z. Wang, Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy. Opt. Express 24, 3055–3066 (2016)CrossRefADSGoogle Scholar
  16. 16.
    A. Li, S. Guo, N. Wazir, K. Chai, L. Liang, M. Zhang, Y. Hao, P.F. Nan, R.B. Liu, Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings. Opt. Express 25, 27559–27569 (2017)CrossRefADSGoogle Scholar
  17. 17.
    X. Gao, L. Liu, C. Song, J.Q. Lin, The role of spatial confinement on nanosecond YAG laser-induced Cu plasma. J. Phys. D Appl. Phys. 48, 175205 (2015)CrossRefADSGoogle Scholar
  18. 18.
    Z. Wang, Z.Y. Hou, S.L. Lui, D. Jiang, J.M. Liu, Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal. Opt. Express 20, A1011–A1018 (2012)CrossRefGoogle Scholar
  19. 19.
    Z.Y. Hou, Z. Wang, J.M. Liu, W.D. Ni, Z. Li, Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy. Opt. Express 21, 15974–15979 (2013)CrossRefADSGoogle Scholar
  20. 20.
    X.W. Li, Z. Wang, X.L. Mao, R.E. Russo, Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities. J. Anal. At. Spectrom. 29, 2127–2135 (2014)CrossRefGoogle Scholar
  21. 21.
    X.J. Su, W.D. Zhou, H.G. Qian, Optimization of cavity size for spatial confined laser-induced breakdown spectroscopy. Opt. Express 22, 28437–28442 (2014)CrossRefADSGoogle Scholar
  22. 22.
    L.B. Guo, Z.Q. Hao, M. Shen, W. Xiong, X.N. He, Z.Q. Xie, M. Gao, X.Y. Li, X.Y. Zeng, Y.F. Lu, Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy. Opt. Express 21, 18188–18195 (2013)CrossRefADSGoogle Scholar
  23. 23.
    X.L. Li, J.G. Wang, L.P. Zhang, X.Z. Li, Temporal and spatial evolution characteristics of plasma confined by hemispherical cavity. Acta Opt. Sin. 38, 0830001-1–0830001-7 (2018)Google Scholar
  24. 24.
    J.Z. Zhou, J.C. Yang, M. Zhou, Y.K. Zhang, D.H. Guo, H.X. Wu, Experimental study on the effects of overlay properties on laser-induced shockwave. Chin. J. Las. 29(11), 1041–1044 (2002)Google Scholar
  25. 25.
    X. Hong, S.B. Wang, D.H. Guo, H.G. Wu, J. Wang, Y.S. Dai, X.P. Xia, Y.N. Xie, Confining medium and absorptive overlay: their effects on a laser-induced shockwave. Opt. Laser Eng. 29(6), 447–455 (1998)CrossRefGoogle Scholar
  26. 26.
    P. Peyre, R. Fabbro, Laser shock processing: a review of the physics and applications. Opt. Quant. Electron. 27(12), 1213–1229 (1995)Google Scholar
  27. 27.
    N. Arnold, J. Gruber, J. Heitz, Spherical expansion of the vapor plume into ambient gas: an analytical model. Appl. Phys. A Mater. Sci. Process. 69(S1), S87–S93 (1999)CrossRefADSGoogle Scholar
  28. 28.
    S. Harilal, B. O’Shay, Y. Tao, M.S. Tillack, Ambient gas effects on the dynamics of laser-produced tin plume expansion. J. Appl. Phys. 99(8), 083303 (2006)CrossRefADSGoogle Scholar
  29. 29.
    S. Harilal, G. Miloshevsky, P. Diwakar, N. LaHaye, A. Hassanein, Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere. Phys. Plasmas 19(8), 083504 (2012)CrossRefADSGoogle Scholar
  30. 30.
    X.D. He, K.E. Torrance, F.X. Sillion, D.P. Greenberg, A comprehensive physical model for light reflection. Conference on Computer Graphics & Interactive Techniques. ACM. 25(4), 175–186 (1991).Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaolong Li
    • 1
  • Jingge Wang
    • 1
    Email author
  • Hehe Li
    • 1
  • Xinzhong Li
    • 1
  • Miaomiao Tang
    • 1
  • Liping Zhang
    • 1
  • Qi Wang
    • 2
    • 3
  1. 1.School of Physics and EngineeringHenan University of Science and TechnologyLuoyangChina
  2. 2.Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture EngineeringHefeiChina
  3. 3.Hefei Institutes of Physical Science, Chinese Academy of SciencesHefeiChina

Personalised recommendations