Advertisement

Applied Physics B

, 125:235 | Cite as

Effect of Mg doping concentration of electron blocking layer on the performance of GaN-based laser diodes

  • J. Yang
  • D. G. ZhaoEmail author
  • J. J. Zhu
  • Z. S. Liu
  • D. S. Jiang
  • P. Chen
  • F. Liang
  • S. T. Liu
  • Y. Xing
Article
  • 38 Downloads

Abstract

Performance of InGaN-based laser diodes (LDs) with different Mg concentrations of electron blocking layer (EBL) is investigated by simulation and experimental methods. It is found from the simulation results that the threshold current decreases and slope efficiency increases, when the Mg concentration of EBL increases from 2 × 1018 to 6 × 1019 cm−3; it is attributed to the suppression of the leakage of electrons and the enhancement of the injection of holes due to the variation of potential barrier for them as the increase of Mg concentration of EBL. These simulation results agree well with the experimental ones, when the Mg concentration of EBL is lower than 7.5 × 1018 cm−3. However, it deteriorates when the Mg concentration increases to 1.2 × 1019 cm−3. It may be due to the increase of the absorption loss of LDs.

Notes

Acknowledgements

The authors acknowledge the support from Science Challenge Project (Grant no. TZ2016003), National Natural Science Foundation of China (Grant nos. 61674138, 61674139, 61604145, 61574135, 61574134, 61474142, 61474110, 61377020, and 61376089), and Beijing Municipal Science and Technology Project (Grant no. Z161100002116037).

References

  1. 1.
    S. Essaian, J. Khaydarov, State of the art of compact green lasers for mobile projectors. Opt. Rev. 19, 400 (2012)CrossRefGoogle Scholar
  2. 2.
    D.G. Zhao, J. Yang, Z.S. Liu, P. Chen, J.J. Zhu, D.S. Jiang, Y.S. Shi, H. Wang, L.H. Duan, L.Q. Zhang, H. Yang, Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes. J. Semicond. 38, 051001 (2017)CrossRefADSGoogle Scholar
  3. 3.
    F. Liang, J. Yang, D.G. Zhao, Z.S. Liu, J.J. Zhu, P. Chen, D.S. Jiang, Y.S. Shi, H. Wang, L.H. Duan, L.Q. Zhang, H. Yang, Room-temperature continuous-wave operation of GaN-based blue–violet laser diodes with a lifetime longer than 1000 h. J. Semicond. 40, 1 (2019)Google Scholar
  4. 4.
    Y.F. Huang, Y.C. Chi, M.K. Chen, D.P. Tsai, D.W. Huang, G.R. Lin, Red/green/blue LD mixed white-light communication at 6500 K with divergent diffuser optimization. Opt. Express 26, 23397 (2018)CrossRefADSGoogle Scholar
  5. 5.
    D.M. Zhao, D.G. Zhao, Analysis of the growth of GaN epitaxy on silicon. J. Semicond. 39, 033006 (2018)CrossRefADSGoogle Scholar
  6. 6.
    D. Robidas, D. Arivuoli, Simulation studies of InGaN based light-emitting diodes to reduce electron overflow problem by designing electron blocking layer. J. Nanosci. Nanotechnol. 6, 4414 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, T.T. Kao, J.P. Liu, Z. Lochner, S.S. Kim, J.H. Ryou, R.D. Dupuis, S.C. Shen, Effects of a step-graded AlxGa1−xN electron blocking layer in InGaN-based laser diodes. J. Appl. Phys. 109, 083115 (2011)CrossRefADSGoogle Scholar
  8. 8.
    J.R. Chen, C.H. Lee, T.S. Ko, Y.A. Chang, T.C. Lu, H.C. Kuo, S.C. Wang, Effects of built-in polarization and carrier overflow on InGaN quantum-well lasers with electronic blocking layers. J. Lightwave Technol. 26, 329 (2008)CrossRefADSGoogle Scholar
  9. 9.
    N.C. Oh, J.G. Lee, Y.Q. Dong, T.S. Kim, H.J. Yu, J.H. Song, Effect of p-AlGaN electron blocking layers on the injection and radiative efficiencies in InGaN/GaN light emitting diodes. Curr. Appl. Phys. 15, S7 (2015)CrossRefGoogle Scholar
  10. 10.
    D.L. Becerra, D.A. Cohen, R.M. Farrell, S.P. Dwnbarrs, S. Nakamura, Effects of active region design on gain and carrier injection and transport of CW (20-2-1) semipolar InGaN laser diodes. Appl. Phys. Express 9, 092104 (2016)CrossRefADSGoogle Scholar
  11. 11.
    J. Hengsterler, P. Prajoon, D. Nirmal, Analysis of high efficiency InGaN multiple-quantum-well light-emitting-diodes using InGaN step-graded barriers. J. Nanoelectron Optoelectron. 6, 939 (2018)CrossRefGoogle Scholar
  12. 12.
    J. Yang, D.G. Zhao, D.S. Jiang, P. Chen, J.J. Zhu, Z.S. Liu, W. Liu, F. Liang, S.T. Liu, Y. Xing, M. Li, Enhancing the performance of InGaN/GaN multiple quantum well blue laser diodes by suppressing the overflow of holes. Superlattice Microstruct. 120, 187 (2018)CrossRefADSGoogle Scholar
  13. 13.
    J. Yang, D.G. Zhao, D.S. Jiang, X. Li, F. Liang, P. Chen, J.J. Zhu, Z.S. Liu, S.T. Liu, L.Q. Zhang, M. Li, Performance of InGaN based green laser diodes improved by using an asymmetric InGaN/InGaN multi-quantum well active region. Opt. Express 25, 287124 (2017)Google Scholar
  14. 14.
    T. Lan, G.Z. Zhou, Y. Li, C.C. Wang, Z.Y. Wang, Mitigation of efficiency droop in an asymmetric GaN-Based high power laser diode with sandwiched GaN/InAlN/GaN lower quantum barrier. IEEE Photonics J. 10, 1504708 (2018)Google Scholar
  15. 15.
    F. Liang, D.G. Zhao, D.S. Jiang, Z.S. Liu, J.J. Zhu, P. Chen, J. Yang, W. Liu, X. Li, S.T. Liu, Y. Xing, L.Q. Zhang, W.J. Wang, M. Li, Y.T. Zhang, G.T. Du, Improvement of slope efficiency of GaN-Based blue laser diodes by using asymmetric MQW and InxGa1−xN lower waveguide. J. Alloys Compd. 731, 243 (2017)CrossRefGoogle Scholar
  16. 16.
    X. Li, D.G. Zhao, D.S. Jiang, P. Chen, Z.S. Liu, J.J. Zhu, M. Shi, D.M. Zhao, W. Liu, Suppression of electron leakage in 808 nm laser diodes with asymmetric waveguide layer. J. Semicond. 37, 014007 (2016)CrossRefGoogle Scholar
  17. 17.
    L.Q. Zhang, D.S. Jiang, J.J. Zhu, D.G. Zhao, Z.S. Liu, S.M. Zhang, H. Yang, Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green. J. Appl. Phys. 105, 023104 (2009)CrossRefADSGoogle Scholar
  18. 18.
    M.X. Feng, J.P. Liu, S.M. Zhang, D.S. Jiang, Z.C. Li, D.Y. Li, L.Q. Zhang, F. Wang, H. Wang, H. Yang, Design considerations for GaN-based blue laser diodes with InGaN upper waveguide layer. IEEE J. Sel. Top. Quant. 19, 1500705 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Yang, D.G. Zhao, D.S. Jiang, P. Chen, J.J. Zhu, Z.S. Liu, F. Liang, W. Liu, S.T. Liu, Enhancing the performance of GaN based LDs by using low In content InGaN instead of GaN as lower waveguide layer. Opt. Laser Technol. 111, 810 (2019)CrossRefADSGoogle Scholar
  20. 20.
    S.T. Liu, J. Yang, D.G. Zhao, D.S. Jiang, F. Liang, P. Chen, J.J. Zhu, Z.S. Liu, W. Liu, Y. Xing, L.Q. Zhang, W.J. Wang, M. Li, Y.T. Zhang, G.T. Du, Mg concentration profile and its control in the low temperature grown Mg-doped GaN epilayer. Superlattice Microstruct. 113, 690 (2018)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J. Yang
    • 1
  • D. G. Zhao
    • 1
    • 2
    Email author
  • J. J. Zhu
    • 1
    • 2
  • Z. S. Liu
    • 1
  • D. S. Jiang
    • 1
  • P. Chen
    • 1
  • F. Liang
    • 1
  • S. T. Liu
    • 1
  • Y. Xing
    • 1
  1. 1.State Key Laboratory of Integrated Optoelectronics, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations