Advertisement

Applied Physics B

, 125:226 | Cite as

OH radical measurements in combustion environments using wavelength modulation spectroscopy and dual-frequency comb spectroscopy near 1491 nm

  • Torrey R. S. HaydenEmail author
  • Nathan Malarich
  • Dan Petrykowski
  • Siddharth P. Nigam
  • Jason D. Christopher
  • Caelan Lapointe
  • Nicholas T. Wimer
  • Peter E. Hamlington
  • Gregory B. Rieker
Article
  • 49 Downloads

Abstract

Hydroxyl radical (OH) is a key intermediate reactive species during combustion processes relevant to power production, transportation, and manufacturing. We demonstrate an OH sensor based on in situ laser absorption spectroscopy for deployment in industrial conditions. The sensor relies on telecommunications-fiber-coupled, tunable-diode-laser absorption spectroscopy of an OH transition near 1491 nm. By employing wavelength modulation spectroscopy, the sensor is capable of in situ, quantitative detection of OH down to mole fraction values of 10−5 over a 75-cm pathlength. To increase the accuracy of the OH sensor, we perform the first dual-comb spectroscopy measurement above a flame and use the results to create an absorption database of water vapor transitions from 1489.2 to 1492.5 nm at temperatures up to 2165 K. The database is included in the analysis procedure for the tunable diode laser sensor to account for the water vapor absorption that overlaps with the OH absorption. The utility of the laser sensor is demonstrated by characterizing the concentration of OH radical above a catalytic combustor under different operating conditions.

Notes

Acknowledgements

Research sponsored by 3M Company.

Supplementary material

340_2019_7341_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1819 kb)

References

  1. 1.
    S.J. Pachuta, M. Strobel, J. Adhes. Sci. Technol. 21, 795 (2007)CrossRefGoogle Scholar
  2. 2.
    M. Strobel, M.C. Branch, M. Ulsh, R.S. Kapaun, S. Kirk, C.S. Lyons, J. Adhes. Sci. Technol. 10, 515 (1996)CrossRefGoogle Scholar
  3. 3.
    Z. Guoli, Z. Aimin, W. Jiating, L. Zhongwei, X. Yong, Plasma Sci. Technol 12, 166 (2010)CrossRefGoogle Scholar
  4. 4.
    N. Srivastava, C. Wang, T.S. Dibble, Eur. Phys. J. D 54, 77 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    R. Grün, H.-J. Günther, Mater. Sci. Eng. A 140, 435 (1991)CrossRefGoogle Scholar
  6. 6.
    P. Bruggeman, D.C. Schram, Plasma Sources Sci. Technol. 19, 045025 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    J.W. Daily, Prog. Energy Combust. Sci. 23, 133 (1997)CrossRefGoogle Scholar
  8. 8.
    M.J. Dyer, D.R. Crosley, Opt. Lett. 7, 382 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Seitzman, R.K. Hanson, P.A. DeBarber, C.F. Hess, Appl. Opt. 33, 4000 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    B.B. Dally, A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29, 1147 (2002)CrossRefGoogle Scholar
  11. 11.
    J.R. Gord, T.R. Meyer, S. Roy, Annu. Rev. Anal. Chem. 1, 663 (2008)CrossRefGoogle Scholar
  12. 12.
    S. Kostka, S. Roy, P.J. Lakusta, T.R. Meyer, M.W. Renfro, J.R. Gord, R. Branam, Appl. Opt. 48, 6332 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    A.M. Steinberg, I. Boxx, C.M. Arndt, J.H. Frank, W. Meier, Proc. Combust. Inst. 33, 1663 (2011)CrossRefGoogle Scholar
  14. 14.
    R. P. Lucht, Laser Spectroscopy and Its Applications. (Taylor & Francis Group, 2017)Google Scholar
  15. 15.
    T. Fuyuto, H. Kronemayer, B. Lewerich, J. Bruebach, T. Fujikawa, K. Akihama, T. Dreier, C. Schulz, Exp. Fluids 49, 783 (2010)CrossRefGoogle Scholar
  16. 16.
    U. Azimov, N. Kawahara, E. Tomita, Fuel 98, 164 (2012)CrossRefGoogle Scholar
  17. 17.
    X. Cui, C. Lengignon, W. Tao, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez, L. Croize, W. Chen, Y. Wang, W. Zhang, X. Gao, W. Liu, Y. Zhang, F. Dong, J. Quant. Spectrosc. Radiat. Transf. 113, 1300 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    G.J. Ray, T.N. Anderson, J.A. Caton, R.P. Lucht, T. Walther, Opt. Lett. 26, 1870 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    S. Wang, R.K. Hanson, Appl. Phys. B 124, 37 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    X. Mercier, E. Therssen, J.F. Pauwels, P. Desgroux, Chem. Phys. Lett. 299, 75 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    R. Peeters, G. Berden, G. Meijer, Appl. Phys. B 73, 65 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    L. Rutkowski, A.C. Johansson, D. Valiev, A. Khodabakhsh, A. Tkacz, F.M. Schmidt, A. Foltynowicz, Photonics Lett. Pol. 8, 110 (2016)CrossRefGoogle Scholar
  23. 23.
    T. Aizawa, Appl. Opt. 40, 4894 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    T. Aizawa, T. Kamimoto, T. Tamaru, Appl. Opt. 38, 1733 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111, 2139 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.-A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.-M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J.V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, J. Quant. Spectrosc. Radiat. Transf. 203, 3 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    P.J. Schroeder, D.J. Pfotenhauer, J. Yang, F.R. Giorgetta, W.C. Swann, I. Coddington, N.R. Newbury, G.B. Rieker, J. Quant. Spectrosc. Radiat. Transf. 203, 194 (2017).Google Scholar
  28. 28.
    L. Rutkowski, A. Foltynowicz, F.M. Schmidt, A.C. Johansson, A. Khodabakhsh, A.A. Kyuberis, N.F. Zobov, O.L. Polyansky, S.N. Yurchenko, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 205, 213 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    P.J. Schroeder, M.J. Cich, J. Yang, F.R. Giorgetta, W.C. Swann, I. Coddington, N.R. Newbury, B.J. Drouin, G.B. Rieker, J. Quant. Spectrosc. Radiat. Transf. 210, 240 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    D.C. Benner, C.P. Rinsland, V.M. Devi, M.A.H. Smith, D. Atkins, J. Quant. Spectrosc. Radiat. Transf. 53, 705 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    B.J. Drouin, D.C. Benner, L.R. Brown, M.J. Cich, T.J. Crawford, V.M. Devi, A. Guillaume, J.T. Hodges, E.J. Mlawer, D.J. Robichaud, F. Oyafuso, V.H. Payne, K. Sung, E.H. Wishnow, S. Yu, J. Quant. Spectrosc. Radiat. Transf. 186, 118 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    R. Engelbrecht, Spectrochim. Acta A Mol. Biomol. Spectrosc. 60, 3291 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    K. Duffin, A.J. McGettrick, W. Johnstone, G. Stewart, D.G. Moodie, J. Light. Technol. 25, 3114 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    T. Cai, T. Tan, G. Wang, W. Chen, X. Gao, Opt. Appl. 39, 13 (2009)Google Scholar
  36. 36.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 5546 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    H. Yang, D. Greszik, T. Dreier, C. Schulz, Appl. Phys. B 99, 385 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    G. Gao, B. Chen, B. Hu, Spectrosc. Lett. 47, 6 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    C.S. Goldenstein, C.A. Almodóvar, J.B. Jeffries, R.K. Hanson, C.M. Brophy, Meas. Sci. Technol. 25, 105104 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    L.J. Lan, Y.J. Ding, Z.M. Peng, Y.J. Du, Y.F. Liu, Appl. Phys. B 117, 1211 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 115, 9 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    Z. Qu, R. Ghorbani, D. Valiev, F.M. Schmidt, Opt. Express 23, 16492 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    A. Behera, A. Wang, Appl. Opt. 55, 4446 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Z. Wang, S.T. Sanders, M.A. Robinson, Appl. Phys. B 122, 176 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    T.R.S. Hayden, D.J. Petrykowski, A. Sanchez, S.P. Nigam, C. Lapointe, J.D. Christopher, N.T. Wimer, A. Upadhye, M. Strobel, P.E. Hamlington, G.B. Rieker, Proc. Combust. Inst. (2018).  https://doi.org/10.1016/j.proci.2018.05.058 CrossRefGoogle Scholar
  46. 46.
    N. Polydorides, A. Tsekenis, E. Fisher, A. Chighine, H. McCann, L. Dimiccoli, P. Wright, M. Lengden, T. Benoy, D. Wilson, G. Humphries, W. Johnstone, Appl. Opt. 57, B1 (2018)CrossRefGoogle Scholar
  47. 47.
    T.R.S. Hayden, N.T. Wimer, C. Lapointe, J.D. Christopher, S.P. Nigam, A. Upadhye, M. Strobel, P.E. Hamlington, G.B. Rieker, Combust. Sci. Technol. 1, 1 (2019)Google Scholar
  48. 48.
    R.K. Hanson, P.K. Falcone, Appl. Opt. 17, 2477 (1978)ADSCrossRefGoogle Scholar
  49. 49.
    I. Coddington, N. Newbury, W. Swann, Optica 3, 414 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    P.J. Schroeder, M.J. Cich, J. Yang, W.C. Swann, I. Coddington, N.R. Newbury, B.J. Drouin, G.B. Rieker, Phys. Rev. A 96, 022514 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    J. Yang, P.J. Schroeder, M.J. Cich, F.R. Giorgetta, W.C. Swann, I. Coddington, N.R. Newbury, B.J. Drouin, G.B. Rieker, J. Quant. Spectrosc. Radiat. Transf. 217, 189 (2018)ADSCrossRefGoogle Scholar
  52. 52.
    P.J. Schroeder, R.J. Wright, S. Coburn, B. Sodergren, K.C. Cossel, S. Droste, G.W. Truong, E. Baumann, F.R. Giorgetta, I. Coddington, N.R. Newbury, G.B. Rieker, Proc. Combust. Inst. 36, 4565 (2017)CrossRefGoogle Scholar
  53. 53.
    S. Coburn, C.B. Alden, R. Wright, K. Cossel, E. Baumann, G.-W. Truong, F. Giorgetta, C. Sweeney, N.R. Newbury, K. Prasad, I. Coddington, G.B. Rieker, Optica 5, 320 (2018)ADSCrossRefGoogle Scholar
  54. 54.
    G.-W. Truong, E.M. Waxman, K.C. Cossel, E. Baumann, A. Klose, F.R. Giorgetta, W.C. Swann, N.R. Newbury, I. Coddington, Opt. Express 24, 30495 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    C.S. Alexander, M.C. Branch, M. Strobel, M. Ulsh, N. Sullivan, T. Vian, Prog. Energy Combust. Sci. 34, 696 (2008)CrossRefGoogle Scholar
  56. 56.
    M.C. Branch, N. Sullivan, M. Ulsh, M. Strobel, Symp. Int. Combust. 27, 2807 (1998)CrossRefGoogle Scholar
  57. 57.
    G.B. Rieker, F.R. Giorgetta, W.C. Swann, J. Kofler, A.M. Zolot, L.C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P.P. Tans, I. Coddington, N.R. Newbury, Optica 1, 290 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    S.M. Gordon, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. Interim Revision, March 1976 (1976)Google Scholar
  59. 59.
    E.M. Waxman, K.C. Cossel, G.-W. Truong, F.R. Giorgetta, W.C. Swann, S. Coburn, R.J. Wright, G.B. Rieker, I. Coddington, N.R. Newbury, Atmos. Meas. Tech. 10, 3295 (2017)CrossRefGoogle Scholar
  60. 60.
    N. Sullivan, M.C. Branch, M. Strobel, J. Park, M. Ulsh, B. Leys, Combust. Sci. Technol. 158, 115 (2000)CrossRefGoogle Scholar
  61. 61.
    S.A. Cottilard, Catalytic Combustion (Nova Science Publishers Inc, Hauppauge, 2011)Google Scholar
  62. 62.
    R.E. Hayes, S.T. Kolaczkowski, Introduction to Catalytic Combustion (CRC Press, Cambridge, 1998)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Torrey R. S. Hayden
    • 1
    Email author
  • Nathan Malarich
    • 1
  • Dan Petrykowski
    • 1
  • Siddharth P. Nigam
    • 1
  • Jason D. Christopher
    • 1
  • Caelan Lapointe
    • 1
  • Nicholas T. Wimer
    • 1
  • Peter E. Hamlington
    • 1
  • Gregory B. Rieker
    • 1
  1. 1.Mechanical Engineering DepartmentUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations