Advertisement

Applied Physics B

, 125:229 | Cite as

Study of spatial thermal distribution of gold nanourchins in saline by combined transverse probe beam deflection and beam wavefront sensor: biomedical implications

  • Mohammad E. KhosroshahiEmail author
Article
  • 33 Downloads

Abstract

Combined probe beam deflection (PBD) and wavefront sensor (WFS) technique are used to investigate the thermal distribution of gold nanourchins (GNU) in physiological saline (PS) using a low-power continuous NIR diode laser. Three different samples were prepared for the experiment: (S1) 0.5 mg/mL GNU only, (S2) 0.5 mL PS and 0.3 mL GNU, and (S3) 0.5 mL PS and 0.1 mL GNU. The laser transmission initially increases linearly as S3 > S2 > S1, but reaches a plateau and remains constant. The probe beam response in an adjective statistics process exhibited a stochastic behaviour at different positions and constant power in x- and y-directions. The beam view profiles showed a non-uniform intensity distribution and the addition of PS dramatically caused a blue shift indicating its cooling effect, S1 (20) warmer > S1(10) medium > S2 (20) cooler. S1 (10), S1 (20), and S2 (20) correspond to the samples irradiated with the laser power (mW) shown in the bracket. The peak-to-valley (PV) and root-mean-square (RMS) values demonstrated a non-linear intensity distribution during the scanning process. The greater PV values in deeper positions may well due to agglomeration, hence the sedimentation process. The Zernike coefficients with high absolute values represent the aberrations that cause the greatest distortion of the wavefront and found in the order of S2(20) > S1(10) > S1(20). This is consistent with PV wavefront slope and spatial period aberration relation. The opto-thermal coefficients were obtained as S2 (− 7.86 × 10−4) > S3: 0.5 mL PS and 0.1 ml GNU (− 6.3 × 10−4), respectively.

Notes

Acknowledgements

Professor MEK greatly appreciates and acknowledges the support and research funding provided by MIS-Electronics R&D department.

References

  1. 1.
    D. Lapotko, Opt. Exp. 17, 2538–2556 (2009)ADSGoogle Scholar
  2. 2.
    E. Ozbay, Science 311, 189–193 (2006)ADSGoogle Scholar
  3. 3.
    M. Gellner, B. Kustner, S. Schlucker, Vib. Spect. 50, 43–47 (2009)Google Scholar
  4. 4.
    A. Haes, S. Zou, G. Schatz, J. Phys. Chem. B 108, 109–116 (2004)Google Scholar
  5. 5.
    M. Tajabadi, M.E. Khosroshahi, Sh Bonakdar, Opt. Photonics J. 5, 212–226 (2015)ADSGoogle Scholar
  6. 6.
    H. He, Ch. Xie, J. Ren, Anal. Chem. 80, 5951–5957 (2008)Google Scholar
  7. 7.
    M.E. Khosroshahi, M. Tajabadi, J. Nanomed. Nanotechnol. 8, 1–10 (2017)Google Scholar
  8. 8.
    S. Park, J. Lee, T. Lee, S. Bae, Int. J. Nanomed. 10, 261–270 (2015)Google Scholar
  9. 9.
    V.P. Pattani, J. Tunnell, Lasers Surg. Med. 44, 675–684 (2012)Google Scholar
  10. 10.
    V.K. Pustovalov, L.G. Astafyeva, E. Galanzha, Cancer Nano 1, 35–56 (2010)Google Scholar
  11. 11.
    M. Lechiner, J. Serb. Chem. Soc. 70, 361–369 (2005)Google Scholar
  12. 12.
    A.O. Pinchuk, G.C. Schatz, Appl. Phys. B 93, 31–38 (2008)ADSGoogle Scholar
  13. 13.
    C. Noguez, J. Phys. Chem. C 111, 3806–3819 (2007)Google Scholar
  14. 14.
    H. Richardson, M. Carison, P. Tandler 9, 1139–1146 (2009)Google Scholar
  15. 15.
    K. Yong, M.T. Swihart, H. Ding, Plasmonics 4, 79–93 (2009)Google Scholar
  16. 16.
    M.E. Khosroshahi, A. Mandelis, B. Lashkari, J. Biomed. Opt. 20, 1–12 (2015)Google Scholar
  17. 17.
    M.E. Khosroshahi, M. Asemani, J. Mod. Phys. 8, 2219–2244 (2017)Google Scholar
  18. 18.
    H.Q. Xie, H. Lee, W. Youn, J. Appl. Phys. 94, 4967–4974 (2003)ADSGoogle Scholar
  19. 19.
    X.L. Chu, A. Nikolov, D. Wasan, Langmuir 12, 5004–5010 (1996)Google Scholar
  20. 20.
    D. Lapotko, Int. J. Heat Mass Tran. 52, 1540–1543 (2009)Google Scholar
  21. 21.
    Z. Liu, Y. Wu, Z. Guo, Y. Liu, PLoS One 9, 1–11 (2014)Google Scholar
  22. 22.
    B. Khlebtsov, V. Zharov, A. Meluikov, V. Tuchin, Nanotech. 17, 5167–5179 (2006)ADSGoogle Scholar
  23. 23.
    M.E. Khosroshahi, L. Ghazanfari, P. Khoshkenar, J. Mod. Phys. 5, 2125–2141 (2014)Google Scholar
  24. 24.
    G. Baffou, R. Quidant, Laser Photonics Rev. 7, 171–187 (2013)ADSGoogle Scholar
  25. 25.
    B. Fasla, A. Senoudi, A. Boussaid, J. Biomat. Nanobiotech. 2, 49–54 (2011)Google Scholar
  26. 26.
    V. Giannini, R. Rodriguez-Olivros, A. Sanchez-Gil, Plasmonics 5, 99–104 (2010)Google Scholar
  27. 27.
    S.D. Indrasekara, S. Meyers, S. Shubeita, L.C. Feldman, T. Gustafsson, L. Fabris, 6, 8891–8899 (2014)Google Scholar
  28. 28.
    Z. Qin, Y. Wang, J. Randrianalisoa, V. Raeesi, Sci. Rep. 6, 1–11 (2016)Google Scholar
  29. 29.
    H. Ma, P. Tian, J. Pello, L. Oddershed, NanoLett. 14, 612–619 (2014)ADSGoogle Scholar
  30. 30.
    R. Rodriguez-Oliveros, J. Sanchez-Gill, Opt. Exp. 20, 621–626 (2012)ADSGoogle Scholar
  31. 31.
    M.E. Khosroshahi, A. Mandelis, B. Lashkari, J. Biomed. Opt. 20(1–2), 076009 (2015)ADSGoogle Scholar
  32. 32.
    M.E. Khosroshahi, A. Mandelis, Int. J. Thermophys. 36, 880–891 (2015)ADSGoogle Scholar
  33. 33.
    J. Zho, J. Shen, C. Hu, Opt. Lett. 27, 1755–1757 (2002)ADSGoogle Scholar
  34. 34.
    R. Silvia, M. de Araujo, P. Jail, S. Moreira, AIP Adv. 1, 1–6 (2011)Google Scholar
  35. 35.
    R.D. Snook, R. Lowe, Analyst 120, 2051–2054 (1995)ADSGoogle Scholar
  36. 36.
    R. Elias, Q. Hassan, H. Sultan, A. Al-Asad, Opt. Laser Tech. 107, 131–141 (2018)ADSGoogle Scholar
  37. 37.
    A. Dhina, P. Palanisamy, J. Biomed. Sci. Eng. 3, 285–290 (2010)Google Scholar
  38. 38.
    A. Tam, Rev. Mod. Phys. 58, 381–431 (1986)ADSGoogle Scholar
  39. 39.
    X. Yu, Y. Yao, Y. Sun, J. Tian, Optik 122, 1701–1706 (2011)ADSGoogle Scholar
  40. 40.
    I. Kwee, J.J. Braat, Pure Appl. Opt. 2, 21–32 (1993)ADSGoogle Scholar
  41. 41.
    D. Rativa, R. de Araujo, A. Gomes, B. Vohnsen, Opt. Exp. 17, 2207-22047–22053 (2009)Google Scholar
  42. 42.
    J. Diaz, J. Fernandez-Dorado, C. Pizarro, J. Arasa, J. Mod. Opt. 56, 149–155 (2009)Google Scholar
  43. 43.
    T. Salmon, C. van de Pol, J. Cat. Ref. 32, 2064–2071 (2006)Google Scholar
  44. 44.
    M.S. Kirilenko, P. Khorin, A. Porfirev, Comput. Opt. Nanophot. 1638, 66–75 (2016)Google Scholar
  45. 45.
    S. Brojabasi, V. Mahendran, B. Lahiri, J. Philip, Opt. Comput. 342, 224–229 (2015)ADSGoogle Scholar
  46. 46.
    B. Derjaguin, L. Landau, Acta Physicochim. URSS 14, 633–662 (1941)Google Scholar
  47. 47.
    E. Verwey, J. Overbeek, Theory of Stability of Lyophobic Colloids (Elsevier Press, Amsterdam, 1948)Google Scholar
  48. 48.
    H. Loria, P. Pereira-Almao, C. Scott, Ind. Eng. Chem. Res. 50, 8529 (2011)Google Scholar
  49. 49.
    S. Ganguly, S. Chakraborty, Phys. Lett. A 375, 2394–2399 (2011)ADSGoogle Scholar
  50. 50.
    A.O. Govorov, W. Zhang, T. Skeini, H. Richardson, Nanoscale Res. Lett. 1, 84–90 (2006)ADSGoogle Scholar
  51. 51.
    A. Polo, V. Kutchoukov, F. Bociort, S. Pereira, H. Urbach, Opt. Exp. 20, 7822–7832 (2012)ADSGoogle Scholar
  52. 52.
    J. Park, W. Lu, J. Phys. Rev. E 83, 031402 (2011)ADSGoogle Scholar
  53. 53.
    V. Slabko, A. Tsipotan, A. Aleksandrovsky, E. Slyuareva, Appl. Phys. B 117, 271–278 (2014)ADSGoogle Scholar
  54. 54.
    C. Bayer, S. Yun Nam, Y. Chen, J. Biomed. Opt. 18, 016001 (2013)ADSGoogle Scholar
  55. 55.
    J. Fan, L. Wang, J. Heat Trans. 133, 04080-1-14 (2011)Google Scholar
  56. 56.
    Y. Yang, T. Ho, Appl. Spect. 41, 583–585 (1987)ADSGoogle Scholar
  57. 57.
    P. Jain, J. Phys. Chem. B 110, 7238–7248 (2006)Google Scholar
  58. 58.
    S.V. Perminov, V.P. Drachev, S. Rautian, Opt. Exp. 15, 8639–8648 (2007)ADSGoogle Scholar
  59. 59.
    L. Ghazanfari, M.E. Khosroshahi, Mat. Sci. Eng. C 42, 185–191 (2014)Google Scholar
  60. 60.
    M.E. Khosroshahi, L. Ghazanfari, Z. Hassannejad, S. Lenhert 4, 1–9 (2015)Google Scholar
  61. 61.
    M. Ortega, L. Rodriguez, J. Piscitelli, A. Fernandez, J. Opt. A Pure Appl. Opt. 10, 1–4 (2008)Google Scholar
  62. 62.
    G. Baffou, H. Rigneault, Phys. Rev. B 84, 035415 (2011)ADSGoogle Scholar
  63. 63.
    A. Govorov, H. Richardson, Nano Today 2, 30–38 (2007)Google Scholar
  64. 64.
    P. Shima, J. Philip, Indust. Eng. Chem. Res. 53, 980–988 (2013)Google Scholar
  65. 65.
    Y. Xuan, Q. Li, Heat Fluid Flow 21, 58–64 (2000)Google Scholar
  66. 66.
    F. Cuppo, A. Figueirds Neto, S. Gomez, J. Opt. Soc. Am. B 19, 1342–1349 (2002)ADSGoogle Scholar
  67. 67.
    W. Jost, Diffusion of Solids, Liquids, Gases, Chapter I and XI, III edn. (Academic Press, New York, 1952)Google Scholar
  68. 68.
    A. Kurian, C. Bindhu, S. Harilal, R. Issac, PRAMAN J. Phys. 43, 401–406 (1994)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanobiophotonics and Biomedical Research LaboratoryMIS-Electronics Inc.Richmond HillCanada
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations