Advertisement

Applied Physics B

, 125:224 | Cite as

Comparative analysis of nonlinear optical properties of single-layer graphene and few-layer graphene nanosheets

  • Dmitry V. KhudyakovEmail author
  • Anatoly S. Lobach
  • Nataliya G. Spitsyna
  • Valery A. Kazakov
Article
  • 18 Downloads

Abstract

Nonlinear absorption of suspensions of graphene nanosheets with the number of layers from one to three was studied using the Z-scan method with femtosecond excitation at 1030 nm wavelength. A large modulation depth and lower saturation intensity of the suspensions as compared with nonlinear absorption of single-layer graphene were shown. Dynamics of photoexcited carriers for different duration of excitation pulse was considered. The values of the absorption cross section and the density of photoexcited carriers in single-layer graphene were estimated. The presence of two-photon absorption (TPA) in suspensions of graphene nanosheets and the absence of noticeable TPA in single-layer graphene were shown.

Notes

Acknowledgements

The work of the IPCP RAS staff was carried out in the frame of the State task (registration number 0089-2019-0008).

References

  1. 1.
    P.L. Huang, S.C. Lin, C.Y. Yeh, H.H. Kuo, S.H. Huang, G.R. Lin, L.J. Li, C.Y. Su, W.H. Cheng, Opt. Exp. 20, 2460 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    K.-J. Yee, J.-H. Kim, M.H. Jung, B.H. Hong, K.-J. Kong, Carbon 49, 4781 (2011)CrossRefGoogle Scholar
  3. 3.
    Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010)CrossRefGoogle Scholar
  4. 4.
    Y.-W. Song, S.-Y. Jang, W.-S. Han, M.-K. Bae, Appl. Phys. Lett. 96, 051122 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A.C. Ferrari, Appl. Phys. Lett. 98, 073106 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson IV, S.V.Dubonos Grigorieva, A.A. Firsov, Nature 438, 197–200 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    C.-C. Lee, J.M. Miller, T.R. Schibli, Appl. Phys. B 108, 129–135 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    A. Marini, J.D. Cox, F.J. Garcia de Abajo, Phys. Rev. B 95, 125408 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    G. Xing, H. Guo, X. Zhang, T.C. Sum, C.H.A. Huan, Opt. Express 18, 4564 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    D. Khudyakov, A. Borodkin, A. Lobach, A. Ryzhkov, S. Vartapetov, Appl. Opt. 52, 150 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R.D. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324(5932), 1312–1314 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Hernandez, V. Nicolosi, M. Lotya, F. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y. Gunko, J. Boland, P. Niraj, G. Duesberg, S. Krishnamurti, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol. 3, 563–568 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    V.G. Kravets, A.N. Grigorenko, R.R. Nair, P. Blake, S. Anissimova, K.S. Novoselov, A.K. Geim, Phys. Rev. B 81, 155413 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    K.R. Paton et al., Nat. Mater. 13, 624–630 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    J. Phiri, P. Gane, T.C. Maloney, J. Mater. Sci. 52, 8321–8337 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    A. Fabbro, D. Scaini, V. León, E. Vázquez, G. Cellot, G. Privitera, L. Lombardi, F. Torrisi, F. Tomarchio, F. Bonaccorso, S. Bosi, A.C. Ferrari, L. Ballerini, M. Prato, ACS Nano 10, 615–623 (2016)CrossRefGoogle Scholar
  18. 18.
    M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276–1291 (2007)CrossRefGoogle Scholar
  19. 19.
    A.S. Lobach, V.A. Kazakov, N.G. Spitsyna, S.A. Baskakov, N.N. Dremova, Y.M. Shul’ga, High Energy Chem. 51, 269–276 (2017)CrossRefGoogle Scholar
  20. 20.
    C. Mou, R. Arif, A.S. Lobach, D.V. Khudyakov, N.G. Spitsina, V.A. Kazakov, S. Turitsyn, A. Rozhin, Appl. Phys. Lett. 106, 061106 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi, Nano Lett. 12, 3925–3930 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    A. Capasso, A.E. Del Rio Castillo, H. Sun, A. Ansaldo, V. Pellegrini, F. Bonaccorso, Solid State Commun. 224, 53–63 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    K. Kouroupis-Agalou, A. Liscio, E. Treossi, L. Ortolani, V. Morandi, N.M. Pugno, V. Palermo, Nanoscale 6, 5926–5933 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J.P. Rabe, C. Ropers, A. Knorr, T. Elsaesser, Phys. Rev. B 83, 153410 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    R.W. Newson, J. Dean, B. Schmidt, H.M. van Driel, Opt. Exp. 17, 2326 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    J.M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M.G. Spencer, Appl. Phys. Lett. 92, 042116 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    K.R. Paton, J.N. Coleman, Carbon 107, 733–738 (2016)CrossRefGoogle Scholar
  28. 28.
    H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A.T.S. Wee, W. Ji, Nano Lett. 11, 2622–2627 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    J.B. Khurgin, Appl. Phys. Lett. 104, 161116 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    E.R. Thoen, E.M. Koontz, M. Joschko, P. Langlois, T.R. Schibli, F.X. Kartner, E.P. Ippen, L.A. Kolodziejski, Appl. Phys. Lett. 74, 3927 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dmitry V. Khudyakov
    • 1
    Email author
  • Anatoly S. Lobach
    • 2
  • Nataliya G. Spitsyna
    • 2
  • Valery A. Kazakov
    • 3
  1. 1.Prokhorov General Physics Institute of the Russian Academy of SciencesMoscowRussian Federation
  2. 2.Institute of Problems of Chemical Physics of the Russian Academy of SciencesChernogolovkaRussian Federation
  3. 3.Keldysh CenterMoscowRussian Federation

Personalised recommendations