Advertisement

Applied Physics B

, 125:217 | Cite as

Dynamic mode matching of internal and external cavities for enhancing the mode-hop-free synchronous tuning characteristics of an external-cavity diode laser

  • Yu Zhu
  • Zhigang LiuEmail author
  • Xin Zhang
  • Shan Shao
  • Haihong Yan
Article
  • 29 Downloads

Abstract

This paper proposed an external-cavity diode laser (ECDL) that has low-frequency tuning (< 10 Hz) ability using the synchronous tuning principle. However, during high-frequency tuning, the mechanical vibration of the external-cavity system inherent in the ECDL is excited, which will break the mode matching of the internal and external cavities and greatly decrease the mode-hop-free (MHF) tuning range of the ECDL. To obtain a wide MHF range at high-frequency tuning, we used an active internal-cavity mode control method with an inductance–resistance–capacitance (LRC) filter to implement the dynamic mode matching of the internal and external cavities. After using the LRC filter, the experimental results indicated that the MHF tuning range at high-frequency tuning was significantly improved and a maximum wavelength tuning rate of 6.21 THz/s was obtained at tuning frequency of 30 Hz using an uncoated laser diode with a central wavelength of 785 nm.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (Grant no. 51875447).

References

  1. 1.
    H. Nasim, Y. Jamil, Laser Phys. Lett. 10, 043001 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    L. Tao, Z. Liu, W. Zhang, Y. Zhou, Opt. Lett. 39, 6997–7000 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Zhu, Z. Liu, W. Deng, Z. Deng, Rev. Sci. Instrum. 89, 053109 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    L. Hartmann, K. Meiners-Hagen, A. Abou-Zeid, Meas. Sci. Technol. 19, 045307 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    T. Sun, W. Zheng, Y. Yu, A.K. Asundi, S. Valyukh, Opt. Laser Eng. 115, 59–66 (2019)CrossRefGoogle Scholar
  6. 6.
    Y. Kim, K. Hibino, N. Sugita, M. Mitsuishi, Opt. Laser Eng. 86, 309–316 (2016)CrossRefGoogle Scholar
  7. 7.
    G. Galzerano, G. Mana, E. Massa, Meas. Sci. Technol. 18, 1338–1342 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Kim, K. Hibino, N. Sugita, M. Mitsuishi, Opt. Laser Eng. 51, 1173–1178 (2013)CrossRefGoogle Scholar
  9. 9.
    H. Yu, C. Aleksoff, J. Ni, Meas. Sci. Technol. 24, 075201 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    X. Jia, Z. Liu, L. Tao, Z. Deng, Opt. Express 25, 25782–25796 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Deng, Z. Liu, B. Li, Z. Liu, Opt. Rev. 22, 724–730 (2015)CrossRefGoogle Scholar
  12. 12.
    V.V. Vassiliev, S.A. Zibrov, V.L. Velichansky, Rev. Sci. Instrum. 77, 013102 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    G. Galbács, Appl. Spectrosc. Rev. 41, 259–303 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    D.K. Shin, B.M. Henson, R.I. Khakimov, J.A. Ross, C.J. Dedman, S.S. Hodgman, K.G. Baldwin, A.G. Truscott, Opt. Express 24, 27403–27414 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    M.S. Brittelle, J.M. Simms, S.T. Sanders, J.R. Gord, S. Roy, Meas. Sci. Technol. 27, 035501 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    K. Richard, P. Manson, P. Ewart, Meas. Sci. Technol. 19, 015603 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    I.E. Olivares, I.A. González, Appl. Phys. B Lasers O 122, 252 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    K.-H. Ko, Y. Kim, H. Park, Y.-H. Cha, T.-S. Kim, L. Lee, G. Lim, J. Han, K.-H. Ko, D.-Y. Jeong, Appl. Phys. B Lasers O 120, 233–238 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    A. Koglbauer, P. Würtz, T. Gericke, H. Ott, Appl. Phys. B Lasers O 104, 577–581 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    J. Czarske, J. Möbius, K. Moldenhauer, Appl. Opt. 44, 5180–5189 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    I. Bayrakli, Appl. Opt. 57, 4039–4042 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    S. Kazuhiko, K. Sho, Y. Nobuhiko, M. Kanehiro, K. Masao, Appl. Opt. 49, 5510–5516 (2010)CrossRefGoogle Scholar
  23. 23.
    T. Führer, D. Stang, T. Walther, Opt. Express 17, 4991–4996 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    T. Führer, T. Walther, Opt. Lett. 33, 372–374 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    S. Euler, T. Walther, T. Führer, J. Opt. Soc. Am. B 28, 508–514 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    K.S. Repasky, A.R. Nehrir, J.T. Hawthorne, G.W. Switzer, J.L. Carlsten, Appl. Opt. 45, 9013–9020 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    C. Petridis, I.D. Lindsay, D.J.M. Stothard, M. Ebrahimzadeh, Rev. Sci. Instrum. 72, 3811–3815 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    H. Gong, Z. Liu, Y. Zhou, W. Zhang, Appl. Opt. 53, 7878–7884 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    L. Nilse, H.J. Davies, C.S. Adams, Appl. Opt. 38, 548–553 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    L. Le, W. Wang, U.S. Patent Application No. 12/657,398 (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing SystemXi’an Jiaotong UniversityXi’anChina
  2. 2.State Key Laboratory for Manufacturing Systems EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations