Advertisement

Applied Physics B

, 125:221 | Cite as

Intrapulse Raman scattering and dissipative solitons with extreme spikes

  • Ivan M. Uzunov
  • Todor N. ArabadzhievEmail author
Article
  • 36 Downloads

Abstract

We have studied numerically the influence of intrapulse Raman scattering (IRS) on the dissipative solitons with extreme spikes (DSES). The following scenarios of the influence of IRS have been identified. In the anomalous dispersion regime, there has been found a transformation of the single spike DSES and pulsating in x and t DSES into Raman dissipative solitons. We should mention a good performance of the finite-dimensional system in the description of all pulse parameters in the first case. In the other scenario, the DSES moving with fixed velocity pulsating in x and t transforms into single spike DSES moving with fixed velocity. We have also observed a transformation of double spike DSES into single spike moving DSES as well as a transformation of a single spike DSES into a single spike moving DSES accompanied by the change in the period of the spikes appearance. In the normal dispersion regime, we have found a transformation of a single spike DSES into a single spike moving DSES and the change of the period of the spikes appearance. For a large strength of IRS, an appearance of a chaotic DSES has been observed.

Notes

References

  1. 1.
    M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 854 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    N.N. Akhmediev, J.M. Soto-Crespo, G. Town, Phys. Rev. E 63, 056602 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    N.N. Akhmediev, A. Ankiewicz, in Dissipative solitons, ed. by N.N. Akhmediev, A. Ankiewicz (Springer, Berlin, 2005)CrossRefGoogle Scholar
  4. 4.
    E. Tsoy, A. Ankiewicz, N.N. Akhmediev, Phys. Rev. E 73, 036621 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    L. Song, L. Li, Z. Li, G. Zhou, Opt. Commun. 249, 301 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    S.C. Latas, M.F.S. Ferreira, M. Facao, Appl. Phys. B 104, 131 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    C. Cartes, O. Descalzi, Fiber Integr. Opt. 34, 14 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    W. Chang, J.M. Soto-Crespo, P. Vouzas, N.N. Akhmediev, Phys. Rev. E 92, 022926 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    J.M. Soto-Crespo, N. Devine, N.N. Akhmediev, JOSA B 34, 1542 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    N.N. Akhmediev, J.M. Soto-Crespo, P. Vouzas, N. Devine, W. Chang, Phil. Trans. R. Soc. A 376, 20180023 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    R.H. Stolen, J.P. Gordon, W.J. Tomlinson, H.A. Haus, JOSA B 6, 1159–1166 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    M. Erkinalo, G. Genty, B. Wetzel, J.M. Dudley, Opt. Express 18, 25449–25460 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    A.I. Maimistov, J. Exp. Theor. Phys. 77, 727 (1993)ADSMathSciNetGoogle Scholar
  14. 14.
    I.M. Uzunov, T.N. Arabadzhiev, ZhD Georgiev, Opt. Fiber Technol. 24, 15 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    I.M. Uzunov, ZhD Georgiev, T.N. Arabadzhiev, Phys. Rev. E 97, 052215 (2018)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    I. M. Uzunov, T. N. Arabadzhiev, Zh. D. Georgiev. AIP Conference Proceedings, vol. 2075, no.1 (AIP Publishing, Melville, 2019)Google Scholar
  17. 17.
    J. Hult, J. Lightwave Technol. 25, 3770–3775 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    M.J. Potasek, G.P. Agrawal, S.C. Pinault, J. Opt. Soc. Am. B 3, 205–211 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    I.M. Uzunov, T.N. Arabadzhiev, Opt. Quantum Electr. 51(8), 283 (2019)CrossRefGoogle Scholar
  20. 20.
    O.V. Sinkin, R. Holzlohner, J. Zweck, C.R. Menyuk, J. Lightwave Technol. 21, 61–68 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Physics, Faculty of Applied Mathematics and InformaticsTechnical University of SofiaSofiaBulgaria

Personalised recommendations