Applied Physics B

, 125:215 | Cite as

An ultrastable laser system at 689 nm for cooling and trapping of strontium

  • Chang Qiao
  • C. Z. Tan
  • F. C. Hu
  • Luc Couturier
  • Ingo Nosske
  • Peng Chen
  • Y. H. Jiang
  • Bing ZhuEmail author
  • Matthias WeidemüllerEmail author


We present a 689-nm cavity-based laser system for cooling and trapping strontium atoms. The laser is stabilized to a high-finesse cavity by the Pound–Drever–Hall technique, exhibiting a frequency stability in the \(10^{-14}\) range for averaging times up to 100 s. A cavity drift of 8 kHz per day is mapped out and compensated. At short times, the laser exhibits a linewidth of a few kilohertz. With this laser system, we realize a magneto-optical trap of strontium operated on the narrow inter-combination transition yielding sub-microkelvin temperatures, and demonstrate absorption spectroscopy on the strontium inter-combination line.



We acknowledge help by Maofeng Xu in performing the FSR measurement. M.W.’s research activities in China are supported by the 1000-Talent-Program of the Chinese Academy of Sciences. The work was supported by the National Natural Science Foundation of China (Grant Nos. 11574290, 11604324, and 11827806) and Shanghai Natural Science Foundation (Grant No. 18ZR1443800). Y.H.J. acknowledges support under Grant Nos. 11420101003 and 91636105. P.C. acknowledges support of Youth Innovation Promotion Association, CAS.


  1. 1.
    J. Ye, S. Blatt, M.M. Boyd, S.M. Foreman, E.R. Hudson, T. Ido, B. Lev, A.D. Ludlow, B.C. Sawyer, B. Stuhl, T. Zelinsky, Precision measurement based on ultracold atoms and cold molecules. Int. J. Mod. Phys. D 16(12b), 2481–2494 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    F.B. Dunning, T.C. Killian, S. Yoshida, J. Burgdörfer, Recent advances in Rydberg physics using alkaline-earth atoms. J. Phys. B At. Mol. Opt. Phys. 49(11), 112003 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    L. Mingwu, N.Q. Burdick, S.H. Youn, B.L. Lev, Strongly dipolar Bose–Einstein condensate of dysprosium. Phys. Rev. Lett. 107(19), 190401 (2011)CrossRefGoogle Scholar
  4. 4.
    K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, F. Ferlaino, Bose–Einstein condensation of erbium. Phys. Rev. Lett. 108(21), 210401 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    L. Mingwu, N.Q. Burdick, B.L. Lev, Quantum degenerate dipolar fermi gas. Phys. Rev. Lett. 108(21), 215301 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31(2), 97–105 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    E.D. Black, An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69(1), 79–87 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    S. Stellmer, F. Schreck, T.C. Killian, Degenerate quantum gases of strontium, in Annual Review of Cold Atoms and Molecules, Annual Review of Cold Atoms and Molecules, vol. 2, pp. 1–80. World Scientific (2013)Google Scholar
  9. 9.
    Y. Li, T. Ido, T. Eichler, H. Katori, Narrow-line diode laser system for laser cooling of strontium atoms on the intercombination transition. Appl. Phys. B 78(3), 315–320 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    L. Ye, L. Yi-Ge, Z. Yang, W. Qiang, W. Shao-Kai, Y. Tao, C. Jian-Ping, L. Tian-Chu, F. Zhan-Jun, Z. Er-Jun, Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms. Chin. Phys. Lett. 27(7), 074208 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    S.A. Strelkin, K.Y. Khabarova, A.A. Galyshev, O.I. Berdasov, AYu. Gribov, N.N. Kolachevsky, S.N. Slyusarev, Secondary laser cooling of strontium-88 atoms. J. Exp. Theor. Phys. 121(1), 19–26 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    R. Schwarz, S. Dörscher, A. Al-Masoudi, S. Vogt, Y. Li, C. Lisdat, A compact and robust cooling laser system for an optical strontium lattice clock. Rev. Sci. Instrum. 90(2), 023109 (2019)ADSCrossRefGoogle Scholar
  13. 13.
    D. Boddy, First Observations of Rydberg Blockade in a Frozen Gas of Divalent Atom. PhD thesis, Durham University (2014)Google Scholar
  14. 14.
    M.M. Boyd, High Precision Spectroscopy of Strontium in an Optical Lattice: Towards a New Standard for Frequency and Time. PhD thesis, University of Colorado (2007)Google Scholar
  15. 15.
    B. Huang, Linewidth Reduction of a Diode Laser by Optical Feedback for Strontium BEC Applications. Master thesis, University of Innsbruck (2009)Google Scholar
  16. 16.
    J.W. Berthold, S.F. Jacobs, Ultraprecise thermal expansion measurements of seven low expansion materials. Appl. Opt. 15(10), 2344–2347 (1976)ADSCrossRefGoogle Scholar
  17. 17.
    L. Couturier, I. Nosske, F. Hu, C. Tan, C. Qiao, Y.H. Jiang, P. Chen, M. Weidemüller, Measurement of the strontium triplet Rydberg series by depletion spectroscopy of ultracold atoms. Phys. Rev. A 99(2), 022503 (2019)ADSCrossRefGoogle Scholar
  18. 18.
    G. Berden, R. Peeters, G. Meijer, Cavity ring-down spectroscopy: experimental schemes and applications. Int. Rev. Phys. Chem. 19(4), 565–607 (2000)CrossRefGoogle Scholar
  19. 19.
    A.E. Siegman, Laser beams and resonators: the 1960s. IEEE J. Sel. Top. Quantum Electron. 6(6), 1380–1388 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    J. Morville, D. Romanini, M. Chenevier, A. Kachanov, Effects of laser phase noise on the injection of a high-finesse cavity. Appl. Opt. 41(33), 6980–6990 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    C.J. Hood, H.J. Kimble, J. Ye, Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity. Phys. Rev. A 64, 033804 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    M. Abdel-Hafiz et al., Guidelines for developing optical clocks with \(10^{-18}\) fractional frequency uncertainty (2019). arXiv:1906.11495 [physics]
  23. 23.
    N. Shiga, Y. Li, H. Ito, S. Nagano, T. Ido, K. Bielska, R.S. Trawiński, R. Ciuryło, Buffer-gas-induced collision shift for the \(^{88}\text{ Sr }\) \({^{1}S}_{0}\text{- }{^{3}P}_{1}\) clock transition. Phys. Rev. A 80, 030501 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    J.H. Shirley, Modulation transfer processes in optical heterodyne saturation spectroscopy. Opt. Lett. 7(11), 537–539 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    T. Preuschoff, M. Schlosser, G. Birkl, Optimization strategies for modulation transfer spectroscopy applied to laser stabilization. Opt. Express 26(18), 24010–24019 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    W. Riley, Handbook of Frequency Stability Analysis—NIST. Special Publication (NIST SP)-1065 (2008)Google Scholar
  27. 27.
    I. Nosske, L. Couturier, F. Hu, C. Tan, C. Qiao, J. Blume, Y.H. Jiang, P. Chen, M. Weidemüller, Two-dimensional magneto-optical trap as a source for cold strontium atoms. Phys. Rev. A 96(5), 053415 (2017)CrossRefGoogle Scholar
  28. 28.
    S.B. Nagel, C.E. Simien, S. Laha, P. Gupta, V.S. Ashoka, T.C. Killian, Magnetic trapping of metastable \({}^{3}{P}_{2}\) atomic strontium. Phys. Rev. A 67, 011401 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    F. Hu, I. Nosske, L. Couturier, C. Tan, C. Qiao, P. Chen, Y.H. Jiang, B. Zhu, M. Weidemüller, Analyzing a single-laser repumping scheme for efficient loading of a strontium magneto-optical trap. Phys. Rev. A 99, 033422 (2019)ADSCrossRefGoogle Scholar
  30. 30.
    H. Katori, T. Ido, Y. Isoya, M. Kuwata-Gonokami, Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 82(6), 1116–1119 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, Making, probing and understanding Bose–Einstein condensates (1997)Google Scholar
  32. 32.
    T.H. Loftus, T. Ido, A.D. Ludlow, M.M. Boyd, J. Ye, Narrow line cooling: finite photon recoil dynamics. Phys. Rev. Lett. 93(7), 073003 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    T.H. Loftus, T. Ido, M.M. Boyd, A.D. Ludlow, J. Ye, Narrow line cooling and momentum-space crystals. Phys. Rev. A 70(6), 063413 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Castin, H. Wallis, J. Dalibard, Limit of Doppler cooling. J. Opt. Soc. Am. B 6(11), 2046–2057 (1989)ADSCrossRefGoogle Scholar
  35. 35.
    S. Stellmer, R. Grimm, F. Schreck, Detection and manipulation of nuclear spin states in fermionic strontium. Phys. Rev. A 84(4), 043611 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    S.L. Bromley, B. Zhu, M. Bishof, X. Zhang, T. Bothwell, J. Schachenmayer, T.L. Nicholson, R. Kaiser, S.F. Yelin, M.D. Lukin et al., Collective atomic scattering and motional effects in a dense coherent medium. Nat. Commun. 7, 11039 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    L. Couturier, High-Resolution Spectroscopy of Strontium Triplet Rydberg Series in an Ultracold Gas. PhD thesis, University of Science and Technology of China, Shanghai (2018)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Modern Physics, Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiChina
  2. 2.CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaShanghaiChina
  3. 3.Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
  4. 4.Physikalisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations