Applied Physics B

, 125:203 | Cite as

Active–passive Q-switched fiber laser based on graphene microfiber

  • Duidui Li
  • Jiwen Zhu
  • Man JiangEmail author
  • Diao Li
  • Hao Wu
  • Jing Han
  • Zhipei Sun
  • Zhaoyu RenEmail author


We report an active–passive Q-switched laser based on graphene-covered microfiber modulator. The graphene-covered microfiber not only serves as a passive saturable absorber in a single laser cavity, but also can be used as an all-optical modulation device to synchronize two pulses generated from different wavelengths. The laser can not only actively change the output frequency of the Q-switched pulse to achieve the repetition frequency reduction, but also compress the pulse and increase the peak power of the output pulse. We successfully achieve the output of the active–passive Q-switched pulse using this fiber laser with a repetition rate from 41.1 kHz to 50.5 kHz. The fiber laser has potential applications in simultaneous output of multi-wavelength pulse.



This work was supported by the International Cooperative Program (Grant No. 2014DFR10780), the National Science Foundation of China (No. 61505162), the Foundation of the Education Committee of Shaanxi Province (No. 14JK1756), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2016JQ6059), the Science and Technology innovation and Entrepreneurship double tutor project of Shaanxi province (2018JM1059).


  1. 1.
    P. Petropoulos, H.L. Offerhaus, D.J. Richardson, S. Dhanjal, N.I. Zheludev, Appl. Phys. Lett. 74(24), 3619–3621 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    B. Hitz, Photon. Spectra 41, 94–95 (2007)Google Scholar
  3. 3.
    U. Sharma, C.S. Kim, J.U. Kang, IEEE Photonics Technol. Lett. 16(5), 1277–1279 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, T. Bragagna, Laser Phys. Lett. 7(7), 498–504 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    X.T. Xu, J.P. Zhai, J.S. Wang, Y.P. Chen, Y.Q. Yu, M. Zhang, I.L. Li, S.C. Ruan, Z.K. Tang, Appl. Phys. Lett. 104(17), 171107 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    M. Xiang, S. Fu, M. Tang, H. Tang, P. Shum, D. Liu, Opt. Express 22(14), 17448–17457 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, J. Chen, Opt. Express 23(20), 26723–26737 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    S. Kivistö, R. Koskinen, J. Paajaste, S.D. Jackson, M. Guina, O.G. Okhotnikov, Opt. Express 16(26), 22058–22063 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    T. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, Y. Sakakibara, Opt. Express 13(20), 8025–8803 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    A. Martinez, K. Zhou, I. Bennion, S. Yamashita, Opt. Express 18(11), 11008–11014 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    J. Liu, S. Wu, Q.H. Yang, P. Wang, Opt. Lett. 36(20), 4008–4010 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai, Opt. Lett. 35(21), 3709–3711 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Q. Sheng, M. Feng, W. Xin, T. Han, Y. Liu, Z. Liu, J. Tian, Opt. Express 21(12), 14859–14866 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Luo, M. Liu, A. Luo, W.C. Xu, Chin. Phys. B 27(9), 094215 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Yu, M. Malmström, O. Tarasenko, W. Margulis, F. Laurell, Opt. Express 18(11), 11017–11052 (2010)CrossRefGoogle Scholar
  16. 16.
    H.H. Kee, G.P. Lees, T.P. Newson, Electron. Lett. 34(13), 1318 (1998)CrossRefGoogle Scholar
  17. 17.
    J.A. Alvarez-Chavez, H.L. Offerhaus, J. Nilsson, P.W. Turner, W.A. Clarkson, D.J. Richardson, Opt. Lett. 25(1), 37–39 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    L. Escalante-Zarate, Y.O. Barmenkov, S.A. Kolpakov, Opt. Express 20(4), 4397–4402 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    L. Li, X. Yang, L. Zhou, W. Xie, Y. Shen, Y. Yang, W. Yang, W. Wang, Z. Lv, X. Duan, M. Chen, Photonics Res. 6(6), 614–619 (2018)CrossRefGoogle Scholar
  20. 20.
    Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Tang, Adv. Funct. Mater. 19(19), 3077–3083 (2009)CrossRefGoogle Scholar
  21. 21.
    W.B. Cho, J.W. Kim, H.W. Lee, S. Bae, B.H. Hong, S.Y. Choi, I.H. Baek, K. Kim, D.-I. Yeom, F. Rotermund, Opt. Lett. 36(20), 4089–4091 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    M. Zhang, E.J.R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A.C. Ferrari, S.V. Popov, J.R. Taylor, Opt. Express 20(22), 25077–25084 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    D. Wu, Z. Luo, F. Xiong, C. Zhang, Y. Huang, S. Chen, W. Cai, Z. Cai, H. Xu, IEEE Photonics Technol. Lett. 26(14), 1474–1477 (2014)CrossRefGoogle Scholar
  24. 24.
    W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, Y.R. Shen, Nano Lett. 14(2), 955–959 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Ni, Y. Wang, T. Yu, Z. Shen, Nano Res. 1(4), 273–291 (2008)CrossRefGoogle Scholar
  26. 26.
    J. Wu, H. Xu, J. Zhang, Acta Chim. Sin. 72(3), 301–318 (2014)CrossRefGoogle Scholar
  27. 27.
    Yulong Tang, Xu Jianqiu, Sci. Rep. 5, 9338 (2015)CrossRefGoogle Scholar
  28. 28.
    Z.B. Liu, M. Feng, W.S. Jiang et al., Laser Phys. Lett. 10(6), 065901 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    R. Wang, D. Li, H. Wu et al., IEEE Photonics J. PP(99), 1–1 (2017)Google Scholar
  30. 30.
    A. Ren, M. Feng, S. Feng, Y. Ren, S. Yang, Z. Yang, Y. Li, Z. Liu, J. Tian, Opt. Express 23(16), 21490–21496 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, School of Physics, Institute of Photonics and Photon TechnologyNorthwest UniversityXi’anChina
  2. 2.Department of Electronics and Nano EngineeringAalto UniversityEspooFinland

Personalised recommendations