Applied Physics B

, 125:197 | Cite as

Microstructure ring fiber for supporting higher-order orbital angular momentum modes with flattened dispersion in broad waveband

  • Shu-Hong Huang
  • Qi-Chang Ma
  • Wei-Cheng Chen
  • Hong-Zhan Liu
  • Xiao-Bo Xing
  • Hu Cui
  • Zhi-Chao Luo
  • Wen-Cheng Xu
  • Ai-Ping LuoEmail author


We design and numerically simulate a microstructure ring fiber, which supports 146 orbital angular momentum (OAM) modes at 1.1 μm and 70 OAM modes at 2.0 μm with flattened dispersion and low nonlinear coefficient. The fiber consists of an air hole at the center and a high refractive index ring between two well-ordered air hole rings in the cladding. It is found that the number of well-separated OAM modes decreases linearly with the increasing wavelength. Moreover, the waveguide dispersions of the modes are flat with wavelengths, which has a minimum variation of 2.92416 ps/nm/km over 900 nm bandwidth from 1.1 to 2.0 μm for HE13,1 mode. In addition, the nonlinear coefficient keeps lower than 1.8/W/km. The designed fiber may pave the way to applications in fiber-based OAM mode-division-multiplexing systems.



National Natural Science Foundation of China (Grant nos. 61875058, 11874018, 61875242, 11474108); Science and Technology Program of Guangzhou (Grant no. 201607010245); Natural Science Foundation of Guangdong Province (no. 2018A030313347).


  1. 1.
    L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    M. Padgett, R. Bowman, Nat. Photonics 5, 343 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    A.E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A.F. Molisch, S. Ashrafi, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 20150439 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    J. Wang, Photonics Res. 4, B14 (2016)CrossRefGoogle Scholar
  5. 5.
    M. Erhard, R. Fickler, M. Krenn, A. Zeilinger, Light Sci. Appl. 7, 17146 (2018)CrossRefGoogle Scholar
  6. 6.
    M.J. Padgett, Opt. Express 25, 11265 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte, Opt. Express 13, 689 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    A.E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M.P.J. Lavery, M. Tur, S. Ramachandran, A.F. Molisch, N. Ashrafi, S. Ashrafi, Adv. Opt. Photonics 7, 66 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A.E. Willner, Nat. Photonics 6, 488 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    J. Du, J. Wang, Opt. Lett. 40, 4827 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    G. Gibson, J. Courtial, M.J. Padgett, M. Vasnetsov, V. Pas’ko, S.M. Barnett, S. Franke-Arnold, Opt. Express 12, 5448 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, S. Ramachandran, Science 340, 1545 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    D.J. Richardson, J.M. Fini, L.E. Nelson, Nat. Photonics 7, 354 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Yue, N. Bozinovic, Y. Ren, H. Huang, M. Tur, P. Kristensen, S. Ramachandran, A.E. Willner, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (Optical Society of America, 2013), p. OTh4G.2Google Scholar
  15. 15.
    H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M.J. Willner, B.I. Erkmen, K.M. Birnbaum, S.J. Dolinar, M.P.J. Lavery, M.J. Padgett, M. Tur, A.E. Willner, Opt. Lett. 39, 197 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, L.A. Rusch, Opt. Express 22, 26117 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    P. Gregg, P. Kristensen, S. E. Golowich, J. Ø. Olsen, P. Steinvurzel, S. Ramachandran, in CLEO 2013 (2013), pp. 1–2Google Scholar
  18. 18.
    J. Ye, Y. Li, Y. Han, D. Deng, Z. Guo, J. Gao, Q. Sun, Y. Liu, S. Qu, Opt. Express 24, 8310 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    S. Li, J. Wang, Sci. Rep. 4, 3853 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Han, Y.-G. Liu, W. Huang, Z. Wang, J.-Q. Guo, M.-M. Luo, Opt. Express 24, 17272 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Zhang, J. Gan, X. Heng, Y. Wu, Q. Li, Q. Qian, D. Chen, Z. Yang, Opt. Express 23, 29331 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    J. Gan, X. Heng, Z. Zhang, Z. Yang, in 2018 Conf. Lasers Electro-Optics (2018), pp. 1–2Google Scholar
  23. 23.
    B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L.A. Rusch, S. LaRochelle, Opt. Express 22, 18044 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    S. Li, J. Wang, Opt. Express 23, 18736 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Z.-A. Hu, Y.-Q. Huang, A.-P. Luo, H. Cui, Z.-C. Luo, W.-C. Xu, Opt. Express 24, 17285 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    H. Zhang, X. Zhang, H. Li, Y. Deng, L. Xi, X. Tang, W. Zhang, Crystals 7, 286 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Ramachandran, P. Kristensen, M.F. Yan, Opt. Lett. 34, 2525 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    C. Brunet, B. Ung, L. Wang, Y. Messaddeq, S. LaRochelle, L.A. Rusch, Opt. Express 23, 10553 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Yue, Y. Yan, N. Ahmed, J. Yang, L. Zhang, Y. Ren, H. Huang, K.M. Birnbaum, B.I. Erkmen, S. Dolinar, M. Tur, A.E. Willner, IEEE Photonics J. 4, 535 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin, Opt. Lett. 21, 1547 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    J.C. Knight, J. Broeng, T.A. Birks, P.S.J. Russell, Science 282, 1476 (1998)CrossRefGoogle Scholar
  32. 32.
    Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, A.E. Willner, Opt. Lett. 37, 1889 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, X. Zhang, IEEE Photonics Technol. Lett. 28, 1426 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, Z. Hou, IEEE Photonics J. 8, 1 (2016)Google Scholar
  35. 35.
    Y. Lei, X. Xu, N. Wang, H. Jia, J. Opt. 20, 105701 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    C. Brunet, B. Ung, P.-A. Bélanger, Y. Messaddeq, S. LaRochelle, L.A. Rusch, J. Lightwave Technol. 32, 4046 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    P.Z. Dashti, F. Alhassen, H.P. Lee, Phys. Rev. Lett. 96, 43604 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    B. Kuhlmey, G. Renversez, D. Maystre, Appl. Opt. 42, 634 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    G.P. Agrawal, Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics, 4th edn. (Elsevier, Amsterdam, 2007)Google Scholar
  40. 40.
    P.S. Maji, P.R. Chaudhuri, ISRN Opt. 2013, 1 (2013)CrossRefGoogle Scholar
  41. 41.
    V.V.R.K. Kumar, A.K. George, W.H. Reeves, J.C. Knight, P.S.J. Russell, F.G. Omenetto, A.J. Taylor, Opt. Express 10, 1520 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices and Guangzhou Key Laboratory for Special Fiber Photonic Devices and ApplicationsSouth China Normal UniversityGuangzhouChina
  2. 2.School of Physics and Optoelectronic EngineeringFoshan UniversityFoshanChina
  3. 3.Education Ministry’s Key Laboratory of Laser Life Science and Institute of Laser Life ScienceSouth China Normal UniversityGuangzhouChina

Personalised recommendations