Advertisement

Applied Physics B

, 125:161 | Cite as

Detection of saline-based refractive index changes via bilayer ZnO/Ag-coated glass optical fiber sensor

  • Zahra Samavati
  • Alireza SamavatiEmail author
  • A. F. IsmailEmail author
  • Mukhlis A. Rahman
  • Mohd Hafiz Dzarfan Othman
Regular Paper
  • 32 Downloads

Abstract

The combination of sensitive nanostructure thin films and optical fiber offers the great prospective for understanding the novel sensor concepts. The partially unclad and bilayer zinc oxide (ZnO)/silver (Ag)-coated multimode glass fiber as a simple and reliable probe is proposed in this work to detect the ambient refractive index changes using two broadband sources of IR and UV–Vis. The wavelength and intensity of propagating light both are modulated when the saline concentration is varied. The appropriate etching time for partially removing the cladding suitable for both IR and UV–Vis sources is 53 min. The fabricated ZnO/Ag/fiber sensor exhibits excellent repeatability and high sensitivity to saline with different concentrations from 0 to 30% at room temperature. Among the sensors probe, higher sensitivity is observed for ZnO/Ag/fiber sample when IR is used as a light source. In this sensor by changing the refractive index of the media from ~ 1 to ~ 1.38, the normalized intensity drop to 0.6 of its maximum value and corresponding wavelength shifted from ~ 1559 to ~ 1585 nm. The high sensitivity of fabricated probe is attributed to two phenomena related to bilayer structure of sensing probe: first, the uncontinuous Ag coating which makes the optical tunneling to the outer layer be possible and, second, altering the optical properties of ZnO by oxygen absorbance through interaction of saline by ZnO nanostructure and changing the refractive index of the deposited layer. The wavelength and intensity are found to be less sensitive for both partially unclad and ZnO/Ag/fiber once UV–Vis is used as a light source, which is due to slighter penetration of evanescent wave in the cladding part compared to IR source.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from Universiti Teknologi Malaysia through the Grant vote number of R.J130000.7609.4C112. The authors would also like to thank Research Management Centre (RMC), Universiti Teknologi Malaysia for the technical support.

References

  1. 1.
    M. Hernaez, C.R. Zamarreño, S. Melendi-Espina, L.R. Bird, A.G. Mayes, F.J. Arregui, Sensors 17, 155 (2017)CrossRefGoogle Scholar
  2. 2.
    T. Wang, S. Korposh, S. James, R. Tatam, S.-W. Lee, Sens. Actuators B Chem. 185, 117 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Konstantaki, A. Klini, D. Anglos, S. Pissadakis, Opt. Express 20, 8472 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    T. Libish, M. Bobby, J. Linesh, S. Mathew, C. Pradeep, V. Nampoori, P. Biswas, S. Bandyopadhyay, K. Dasgupta, P. Radhakrishnan, Laser Phys. 23, 045112 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, W.J. Bock, Biosens. Bioelectron. 67, 93 (2015)CrossRefGoogle Scholar
  6. 6.
    L. Coelho, R. Queirós, J.L. Santos, M.C.L. Martins, D. Viegas, P. Jorge, Int. Soc. Opt. Photon. 8957, 89570K (2014)Google Scholar
  7. 7.
    C. Major, A. Nemeth, G. Radnoczi, Z. Czigany, M. Fried, Z. Labadi, I. Barsony, Appl. Surf. Sci. 255, 8907 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Z.L. Wang, Mater. Today 7, 26 (2004)CrossRefGoogle Scholar
  9. 9.
    K.B. Mogensen, K. Kneipp, J. Phys. Chem. C 118, 28075 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Liang, Q. Liu, G. Wen, Z. Jiang, Trends Anal. Chem. 37, 32 (2012)CrossRefGoogle Scholar
  11. 11.
    Y. Lin, Y. Zou, R.G. Lindquist, Biomed. Opt. Express 2, 478 (2011)CrossRefGoogle Scholar
  12. 12.
    L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, R.P. Van Duyne, Nano Lett. 6, 2060 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    D.R. Raj, S. Prasanth, T.V. Vineeshkumar, C. Sudarsanakumar, Sens. Actuators B Chem. 224, 600 (2016)CrossRefGoogle Scholar
  14. 14.
    S.K. Mishra, S. Bhardwaj, B.D. Gupta, IEEE Sens. J. 15, 1235 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Z.-J. Ke, D.-L. Tang, X. Lai, Z.-Y. Dai, Q. Zhang, Optik 157, 1094 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    S.M. Spuler, D. Richter, M.P. Spowart, K. Rieken, Appl. Opt. 50, 842 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Y. He, Y. Ma, Y. Tong, X. Yu, Z. Peng, J. Gao, F.K. Tittel, Appl. Phys. Lett. 111, 241102 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    S. Azad, E. Sadeghi, R. Parvizi, A. Mazaheri, Mater. Sci. Semicond. Process. 66, 200 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Chaudhari, A. Shaligram, Sens. Actuators A 100, 160 (2002)CrossRefGoogle Scholar
  20. 20.
    C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, P.K. Chu, Plasmonics 13, 779 (2018)CrossRefGoogle Scholar
  21. 21.
    E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, T.M. Monro, Sensors 15, 25090 (2015)CrossRefGoogle Scholar
  22. 22.
    Z. Samavati, A. Samavati, A.F. Ismail, M.A. Rahman, M.H.D. Othman, Chin. Opt. Lett. 16, 090602 (2018)CrossRefGoogle Scholar
  23. 23.
    S. Azad, E. Sadeghi, R. Parvizi, A. Mazaheri, M. Yousefi, Opt. Laser Technol. 90, 96 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, Y. Wang, Sens. Actuators B Chem. 230, 206 (2016)CrossRefGoogle Scholar
  25. 25.
    B. Renganathan, D. Sastikumar, G. Gobi, N.R. Yogamalar, A.C. Bose, Opt. Laser Technol. 43, 1398 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Zhao, Z.-Q. Deng, Q. Wang, Sens. Actuators B Chem. 192, 229 (2014)CrossRefGoogle Scholar
  27. 27.
    A. Rohrbach, Biophys. J. 78, 2641 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    Z. Tian, S.S.-H. Yam, J. Barnes, W. Bock, P. Greig, J.M. Fraser, H.-P. Loock, R.D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Zhang, M. Lei, H. Hu, Y. Zhao, J. Li, H. Gao, Instrum. Sci. Technol. 46, 1 (2018)CrossRefGoogle Scholar
  30. 30.
    S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, T. Wang, Opt. Express 23, 13880 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    S. Peng, J.M. McMahon, G.C. Schatz, S.K. Gray, Y. Sun, Proc. Natl. Acad. Sci. 107, 14530 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    H.E. de Bruijn, R.P.H. Kooyman, J. Greve, Appl. Opt. 31, 440 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Membrane Technology Research Centre (AMTEC)Universiti Technologi Malaysia (UTM)Johor BahruMalaysia

Personalised recommendations