Applied Physics B

, 125:151 | Cite as

LIGHTAWE—case studies of LIGHT spreAd in poWder materials: a montE carlo simulation tool for research and educational purposes

  • Panagiotis LiaparinosEmail author


In this paper, the LIGHTAWE Monte Carlo simulation tool is introduced and presented. LIGHTAWE has been developed to provide case studies of light spread in powder materials for both research and educational purposes. The algorithms of LIGHTAWE are based on Mie scattering theory and Henyey–Greenstein distribution. LIGHTAWE simulates the light ray interactions and encounters the overall optical diffusion, transmission and reflection (amount and distribution) of granular structured layers. Two main options are included: (a) fixed light point sources within the layer (concerning optical diffusion for any structure of spherical particles embedded within a surrounding medium) and (b) light distribution of 62 specific powder phosphor materials under X-ray penetration. The above options make LIGHTAWE an available and useful tool for a variety of scientific fields and applications. The capability to alter a set of parameters and perform a countless number of probable and comparable simulations, can insight and further enlighten the research of light spread performance. Based on the Monte Carlo methodology, LIGHTAWE can overcome cumbersome analytical modelling, and can take advantage of computer science to perform experiments that would be otherwise impossible (i.e., the capability to design, evaluate and optimize “virtual” experimental set-ups of “zero cost” or with “low risk” actions) enhancing curiosity-driven future research. The manuscript demonstrates the physics, the treatment and the capabilities of LIGHTAWE as well as the corresponding advantages, disadvantages, benefits and limitations. Finally, a simulation example is presented in the Appendix section.



  1. 1.
    M. Hoheisel, Review of medical imaging with emphasis on X-ray detectors. Nucl. Instr. Method Phys. Res. Sect. A 563, 215–224 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    J.C. Dainty, R. Shaw, Image science (Academic, New York, 1974)Google Scholar
  3. 3.
    J.D. Gaskill, Linear systems, fourier transforms, and optics (Wiley, New York, 1978)Google Scholar
  4. 4.
    A.P. Gibson, J.C. Hebden, S.R. Arridge, Recent advances in diffuse optical imaging. Phys. Med. Biol. 50, R1–R43 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S.M.W.Y. van de Ven, S.G. Elias, M.A.A.J. van den Bosch, P. Luijten, W.T.M. Mali, Optical imaging of the breast. Cancer Imaging 8, 206–215 (2008)CrossRefGoogle Scholar
  6. 6.
    A.P. Dhawan, B. D’Alessandro, X. Fu, Optical imaging modalities for biomedical applications. IEEE Rev. Biomed. Eng. 3, 69–92 (2010)CrossRefGoogle Scholar
  7. 7.
    T. Durduran, R. Choe, W.B. Baker, A.G. Yodh, Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys. 73, 076701 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Calin, S.V. Parasca, R. Savastru, M.R. Calin, S. Dontu, Optical techniques for the noninvasive diagnosis of skin cancer. Cancer Res Clin Oncol 139, 1083–1104 (2013)CrossRefGoogle Scholar
  9. 9.
    Z. Chen, Y. Zhou, J.-T. Shen, Exact dissipation model for arbitrary photonic Fock state transport in waveguide QED systems. Opt. Lett. 42, 887–890 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Chen, Y. Zhou, J.-T. Shen, Entanglement-preserving approach for reservoir-induced photonic dissipation in waveguide QED systems. Phys. Rev. A 98, 053830 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    N. Metropolis, The beginning of the Monte Carlo method. Los Alamos Sci. 15, 125–130 (1987)MathSciNetGoogle Scholar
  12. 12.
    D.W.O. Rogers, 50 years of Monte Carlo simulations for medical physics. Phys. Med. Biol. 51, R287–R301 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    M. G. Pia, T. Basaglia, Z. W. Bell, P. V. Dressendorfer, The impact of Monte Carlo simulation: a scientometric analysis of scholarly literature, Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010), Tokyo, Japan, October 17–21, (2010)Google Scholar
  14. 14.
    G. Mie, Beitrage zur Optik tr ̈uber Medien, speziell kolloidaler Metallosungen. Annal. Physik 25, 377–445 (1908)ADSCrossRefGoogle Scholar
  15. 15.
    L.G. Henyey, J.L. Greenstein, Diffuse radiation in the galaxy. Astrophys. J. 93, 70–83 (1941)ADSCrossRefGoogle Scholar
  16. 16.
    H.C. van de Hulst, Light scattering by small particles (Wiley, New York, 1957)Google Scholar
  17. 17.
    C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983)Google Scholar
  18. 18.
    P.F. Liaparinos, Optical diffusion performance of nanophosphor-based materials for use in medical imaging. J. Biomed. Opt. 17, 126013 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    H. Chander, Development of nanophosphors. Mater. Sci. Eng. 49, 113–155 (2005)CrossRefGoogle Scholar
  20. 20.
    P. Moriarty, Nanostructured materials. Rep. Prog. Phys. 64, 297–381 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    L. Melcher, J.S. Schweitzer, Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans. Nucl. Sci. 39, 502–505 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    A. Kienle, Anisotropic light diffusion: an oxymoron? Phys. Rev. Let. 98, 218104 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    National Research Council, Atomic, molecular, and optical science: an investment in the future (The National Academies Press, Washington, DC, 1994)Google Scholar
  24. 24.
    W.L. Dunn, J.E. Fernández, M.I. Lopes, D.A. Bradley, J.C. Carvalho, M. Cooper, J. Pinto da Cunha, R.P. Gardner, F. Salvat, E. Sartori, A. Sood, P. Vaz, Organizing committee, workshop on use of Monte Carlo techniques for design and analysis of radiation detectors (ISRP10), 15–17 September, Coimbra, Portugal (2006)Google Scholar
  25. 25.
    I.A. Cunningham, Applied linear-systems theory in handbook of medical imaging, in Physics and psychophysics, ed. by J. Beutel, H.L. Kundel, R.L. Van Metter (SPIE, Bellingham, 2000), pp. 82–157Google Scholar
  26. 26.
    P. Liaparinos, I. Kandarakis, D. Cavouras, H. Delis, G. Panayiotakis, Modeling granular phosphor screens by Monte Carlo methods. Med. Phys. 33, 4502–4514 (2006)CrossRefGoogle Scholar
  27. 27.
    H. Du, Mie-scattering calculation. Appl. Opt. 43, 1951–1956 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    S. A. Prahl, Mie Scattering Calculator, Portland, OR, Oregon Medical Laser Center (2006) [Online]. Available:
  29. 29.
    P. Liaparinos, I. Kandarakis, Investigating the optical diffusion capabilities of nanophosphors for use in medical imaging (SPIE, Florida, 2013), p. 8668Google Scholar
  30. 30.
    C.W.E. van Eijk, Inorganic-scintillator development. Nucl. Instrum. Methods. Phys. Res. A. 460, 1–14 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    C.W.E. van Eijk, Inorganic scintillators in medical imaging. Phys. Med. Biol. 47, R85–R106 (2002)CrossRefGoogle Scholar
  32. 32.
    S. Derenzo, M. Boswell, M. Weber, K. Brennan, Data base displaying the scintillation properties of phosphor materials, (2017), created by:
  33. 33.
    J.H. Hubbell, P.N. Trehan, N. Singh, B. Chand, D. Mehta, M.L. Garg, R.R. Grag, S. Singh, S. Purl, A review, bibliography, and tabulation of KL and higher atomic shell X-ray fluorescence yields. J. Phys. Chem. Ref. Data 23, 339–364 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    J. B. Kortright, A. C. Thompson, X-ray emission energies in X-ray data booklet, Lawrence Berkeley National Laboratory, University of California, Berkeley, United States, pp 1–8 (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical EngineeringUniversity of West AtticaAthensGreece

Personalised recommendations