Advertisement

Applied Physics B

, 125:154 | Cite as

Multilayer ion trap with three-dimensional microwave circuitry for scalable quantum logic applications

  • H. Hahn
  • G. Zarantonello
  • A. Bautista-Salvador
  • M. Wahnschaffe
  • M. Kohnen
  • J. Schoebel
  • P. O. Schmidt
  • C. OspelkausEmail author
Article

Abstract

We present a multilayer surface-electrode ion trap with embedded 3D microwave circuitry for implementing entangling quantum logic gates. We discuss the electromagnetic full-wave simulation procedure that has led to the trap design and the characterization of the resulting microwave field pattern using a single ion as a local field probe. The results agree with simulations within the uncertainty; compared to previous traps, this design reduces detrimental AC Zeeman shifts by three orders of magnitude. The design presented here can be viewed as an entangling gate component in a library for surface-electrode ion traps intended for quantum logic operations.

Notes

Acknowledgements

We acknowledge support by the PTB cleanroom facility team and funding from PTB, LUH, the clusters of excellence QUEST and Quantum Frontiers, NTH (project number 2.2.11), the EU QT Flagship project MicroQC (grant no 820314) and DFG through SFB 1227 DQ-mat, project A01.

References

  1. 1.
    J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    R. Blatt, D. Wineland, Nature 453, 1008 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    I.M. Georgescu, S. Ashhab, F. Nori, Rev. Mod. Phys. 86, 153 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler, T. Monz, U. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S. Benjamin, M. Müller, Phys. Rev. X 7, 041061 (2017)Google Scholar
  5. 5.
    A. Montanaro, npj Quantum Inf. 2, 15023 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    S. Debnath, N.M. Linke, C. Figgatt, K.A. Landsman, K. Wright, C. Monroe, Nature 536, 63 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    T. Monz, D. Nigg, E.A. Martinez, M.F. Brandl, P. Schindler, R. Rines, S. XWang, I.L. Chuang, R. Blatt, Science 351, 1068 (2016)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Zhang, G. Pagano, P.W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A.V. Gorshkov, Z.-X. Gong, C. Monroe, Nature 551, 601 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C. Hempel, B. Lanyon, M. Heyl, R. Blatt, C. Roos, Phys. Rev. Lett. 119, 080501 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    C. Monroe, J. Kim, Science 339, 1164 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Leibfried, J. Britton, J.H. Wesenberg, R.B. Blakestad, R.J. Epstein, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev. Lett. 96, 253003 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    D.J. Wineland, C.R. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, J. Res. NIST 103, 259 (1998)CrossRefGoogle Scholar
  13. 13.
    D. Kielpinski, C. Monroe, D.J. Wineland, Nature 417, 709 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Amini, H. Uys, J.H. Wesenberg, S. Seidelin, J. Britton, J.J. Bollinger, D. Leibfried, C. Ospelkaus, A.P. VanDevender, D.J. Wineland, New J. Phys. 12, 033031 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    D.P.L.A. Craik, N.M. Linke, T.P. Harty, C.J. Ballance, D.M. Lucas, A.M. Steane, D.T.C. Allcock, Appl. Phys. B 114, 3 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    N.D. Guise, S.D. Fallek, K.E. Stevens, K.R. Brown, C. Volin, A.W. Harter, J.M. Amini, R.E. Higashi, S.T. Lu, H.M. Chanhvongsak, T.A. Nguyen, M.S. Marcus, T.R. Ohnstein, D.W. Youngner, J. Appl. Phys. 117, 174901 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    P.L.W. Maunz, Technical report. Sandia National Lab. SAND-2016-0796R (2016)Google Scholar
  18. 18.
    C. Ospelkaus, C.E. Langer, J.M. Amini, K.R. Brown, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 101, 090502 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    F. Mintert, C. Wunderlich, Phys. Rev. Lett. 87, 257904 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    J. Gaebler, T. Tan, Y. Lin, Y. Wan, R. Bowler, A. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 117, 060505 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    C. Ballance, T. Harty, N. Linke, M. Sepiol, D. Lucas, Phys. Rev. Lett. 117, 060504 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    M. Johanning, A. Braun, N. Timoney, V. Elman, W. Neuhauser, C. Wunderlich, Phys. Rev. Lett. 102, 073004 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    T. Harty, M. Sepiol, D. Allcock, C. Ballance, J. Tarlton, D. Lucas, Phys. Rev. Lett. 117, 140501 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    C. Ospelkaus, U. Warring, Y. Colombe, K.R. Brown, J.M. Amini, D. Leibfried, D.J. Wineland, Nature 476, 181 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    A. Khromova, C. Piltz, B. Scharfenberger, T.F. Gloger, M. Johanning, A.F. Varón, C. Wunderlich, Phys. Rev. Lett. 108, 220502 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    S. Weidt, J. Randall, S. Webster, K. Lake, A. Webb, I. Cohen, T. Navickas, B. Lekitsch, A. Retzker, W. Hensinger, Phys. Rev. Lett. 117, 220501 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    R. Ozeri, W.M. Itano, R.B. Blakestad, J. Britton, J. Chiaverini, J.D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J.H. Wesenberg, D.J. Wineland, Phys. Rev. A 75, 042329 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    T. Harty, D. Allcock, C. Ballance, L. Guidoni, H. Janacek, N. Linke, D. Stacey, D. Lucas, Phys. Rev. Lett. 113, 220501 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    M. Wahnschaffe, H. Hahn, G. Zarantonello, T. Dubielzig, S. Grondkowski, A. Bautista-Salvador, M. Kohnen, C. Ospelkaus, Appl. Phys. Lett. 110, 034103 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    A. Bautista-Salvador, G. Zarantonello, H. Hahn, A. Preciado-Grijalva, J. Morgner, M. Wahnschaffe, C. Ospelkaus, New Phys. J. 21, 043011 (2019)CrossRefGoogle Scholar
  31. 31.
    J.H. Wesenberg, Phys. Rev. A 78, 063410 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    D.R. Leibrandt, R.J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K.R. Brown, I.L. Chuang, Phys. Rev. A 76, 055403 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    H.-Y. Lo, J. Alonso, D. Kienzler, B.C. Keitch, LEd Clercq, V. Negnevitsky, J.P. Home, Appl. Phys. B 114, 17 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    A.C. Wilson, C. Ospelkaus, A.P. VanDevender, J.A. Mlynek, K.R. Brown, D. Leibfried, D.J. Wineland, Appl. Phys. B 105, 741 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    M. Carsjens, M. Kohnen, T. Dubielzig, C. Ospelkaus, Appl. Phys. B 114, 243 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. A 61, 063418 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    U. Warring, C. Ospelkaus, Y. Colombe, R. Jördens, D. Leibfried, D.J. Wineland, Phys. Rev. A 87, 013437 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    A. Sørensen, K. Mølmer, Phys. Rev. Lett. 82, 1971 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    K. Mølmer, A. Sørensen, Phys. Rev. Lett. 82, 1835 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany
  2. 2.Institute of Quantum OpticsLeibniz Universität HannoverHannoverGermany
  3. 3.Laboratory for Nano- and Quantum EngineeringLeibniz Universität HannoverHannoverGermany
  4. 4.Department for High-Frequency TechnologyTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations