Advertisement

Applied Physics B

, 125:122 | Cite as

Minimizing rf-induced excess micromotion of a trapped ion with the help of ultracold atoms

  • Amir Mohammadi
  • Joschka Wolf
  • Artjom Krükow
  • Markus Deiß
  • Johannes Hecker DenschlagEmail author
Article

Abstract

We report on the compensation of excess micromotion due to parasitic rf-electric fields in a Paul trap. The parasitic rf-electric fields stem from the Paul trap drive but cause excess micromotion, e.g., due to imperfections in the setup of the Paul trap. We compensate these fields by applying rf-voltages of the same frequency, but adequate phases and amplitudes to Paul trap electrodes. The magnitude of micromotion is probed by studying elastic collision rates of the trapped ion with a gas of ultracold neutral atoms. Furthermore, we demonstrate that also reactive collisions can be used to quantify micromotion. We achieve compensation efficiencies of about 1 \(\,\text {Vm}^{-1}\), which is comparable to other conventional methods.

Notes

Acknowledgements

This work was supported by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) within SFB/TRR21 and grant DE 510/2-1.

References

  1. 1.
    H. Häffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155 (2008).  https://doi.org/10.1016/j.physrep.2008.09.003 ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Bermudez, P. Schindler, T. Monz, R. Blatt, M. Müller, New J. Phys. 19, 113038 (2017).  https://doi.org/10.1088/1367-2630/aa86eb ADSCrossRefGoogle Scholar
  3. 3.
    M. Johanning, A.F. Varón, C. Wunderlich, J. Phys. B: At. Mol. Opt. Phys. 42, 154009 (2009).  https://doi.org/10.1088/0953-4075/42/15/154009 ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Wineland, W.M. Itano, J.C. Bergquist, R.G. Hulet, Phys. Rev. A 36, 2220 (1987).  https://doi.org/10.1103/PhysRevA.36.2220 ADSCrossRefGoogle Scholar
  5. 5.
    A.L. Wolf, S.A. van den Berg, C. Gohle, E.J. Salumbides, W. Ubachs, K.S.E. Eikema, Phys. Rev. A 78, 032511 (2008).  https://doi.org/10.1103/PhysRevA.78.032511 ADSCrossRefGoogle Scholar
  6. 6.
    A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Rev. Mod. Phys. 87, 637 (2015).  https://doi.org/10.1103/RevModPhys.87.637 ADSCrossRefGoogle Scholar
  7. 7.
    M. Tomza, K. Jachymski, R. Gerritsma, A. Negretti, T. Calarco, Z. Idziaszek and P. S.Julienne, arXiv:1708.07832 (2017)
  8. 8.
    A. Härter, J. Hecker Denschlag, Contemp. Phys. 55, 33 (2014).  https://doi.org/10.1080/00107514.2013.854618 CrossRefGoogle Scholar
  9. 9.
    D. Zhang and S. Willitsch, Chap. 10 in: Cold chemistry: molecular scattering and reactivity near absolute zero (edited by O. Dulieu and A. Osterwalder), RSC Publishing (2017).  https://doi.org/10.1039/9781782626800 Google Scholar
  10. 10.
    D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, J. Appl. Phys. 83, 5025 (1998).  https://doi.org/10.1063/1.367318 ADSCrossRefGoogle Scholar
  11. 11.
    D.T.C. Allcock, J.A. Sherman, D.N. Stacey, A.H. Burrell, M.J. Curtis, G. Imreh, N.M. Linke, D.J. Szwer, S.C. Webster, A.M. Steane, D.M. Lucas, New J. Phys. 12, 053026 (2010).  https://doi.org/10.1088/1367-2630/12/5/053026 ADSCrossRefGoogle Scholar
  12. 12.
    B.L. Chuah, N.C. Lewty, R. Cazan, M.D. Barret, Opt. Express 21, 10632 (2013).  https://doi.org/10.1364/OE.21.010632 ADSCrossRefGoogle Scholar
  13. 13.
    T.F. Gloger, P. Kaufmann, D. Kaufmann, M.T. Baig, T. Collath, M. Johanning, C. Wunderlich, Phys. Rev. A 92, 043421 (2015).  https://doi.org/10.1103/PhysRevA.92.043421 ADSCrossRefGoogle Scholar
  14. 14.
    U. Tanaka, K. Masuda, Y. Akimoto, K. Koda, Y. Ibaraki, S. Urabe, Appl. Phys. B 107, 907 (2012).  https://doi.org/10.1007/s00340-011-4762-2 ADSCrossRefGoogle Scholar
  15. 15.
    S. Narayanan, N. Daniilidis, S.A. Möller, R. Clark, F. Ziesel, K. Singer, F. Schmidt-Kaler, H. Häffner, J. Appl. Phys. 110, 114909 (2011).  https://doi.org/10.1063/1.3665647 ADSCrossRefGoogle Scholar
  16. 16.
    J. Keller, H.L. Partner, T. Burgermeister, T.E. Mehlstäubler, J. Appl. Phys. 118, 104501 (2015).  https://doi.org/10.1063/1.4930037 ADSCrossRefGoogle Scholar
  17. 17.
    Z. Meir, T. Sikorsky, R. Ben-shlomi, N. Akerman, M. Pinkas, Y. Dallal, R. Ozeri, J. Mod. Opt. 65, 501 (2017).  https://doi.org/10.1080/09500340.2017.1397217 ADSCrossRefGoogle Scholar
  18. 18.
    T. Huber, A. Lambrecht, J. Schmidt, L. Karpa, T. Schaetz, Nat. Commun. 5, 5587 (2014).  https://doi.org/10.1038/ncomms6587 ADSCrossRefGoogle Scholar
  19. 19.
    A. Härter, A. Krükow, A. Brunner, J. Hecker Denschlag, Appl. Phys. Lett. 102, 221115 (2013).  https://doi.org/10.1063/1.4809578 ADSCrossRefGoogle Scholar
  20. 20.
    Z. Meir, T. Sikorsky, R. Ben-shlomi, N. Akerman, Y. Dallal, R. Ozeri, Phys. Rev. Lett. 117, 243401 (2016).  https://doi.org/10.1103/PhysRevLett.117.243401 ADSCrossRefGoogle Scholar
  21. 21.
    S. Schmid, A. Härter, A. Frisch, S. Hoinka, J. Hecker Denschlag, Rev. Sci. Instrum. 83, 053108 (2012).  https://doi.org/10.1063/1.4718356 ADSCrossRefGoogle Scholar
  22. 22.
    A. Härter, Two-body and three-body dynamics in atom-ion experiments. Ph.D. thesis, Universität Ulm (2013)Google Scholar
  23. 23.
    A. Brunner, Excess Micromotion in Atom-Ionen Experimenten. Diploma thesis, Universität Ulm (2012)Google Scholar
  24. 24.
    P.F. Herskind, A. Dantan, M. Albert, J.P. Marler, M. Drewsen, J. Phys. B: At. Mol. Opt. Phys. 42, 154008 (2009).  https://doi.org/10.1088/0953-4075/42/15/154008 ADSCrossRefGoogle Scholar
  25. 25.
    M. Cetina, A.T. Grier, V. Vuletić, Phys. Rev. Lett. 109, 253201 (2012).  https://doi.org/10.1103/PhysRevLett.109.253201 ADSCrossRefGoogle Scholar
  26. 26.
    H.A. Fürst, N.V. Ewald, T. Secker, J. Joger, T. Feldker, R. Gerritsma, J. Phys. B: At. Mol. Opt. Phys. 51, 195001 (2018).  https://doi.org/10.1088/1361-6455/aadd7d ADSCrossRefGoogle Scholar
  27. 27.
    L.H. Nguyên, A. Kalev, M.D. Barrett, B.-G. Englert, Phys. Rev. A 85, 052718 (2012).  https://doi.org/10.1103/PhysRevA.85.052718 ADSCrossRefGoogle Scholar
  28. 28.
    B. Höltkemeier, P. Weckesser, H. López-Carrera, M. Weidemüller, Phys. Rev. Lett. 116, 233003 (2016).  https://doi.org/10.1103/PhysRevLett.116.233003 ADSCrossRefGoogle Scholar
  29. 29.
    C. Zipkes, L. Ratschbacher, C. Sias, M. Köhl, New J. Phys. 13, 053020 (2011).  https://doi.org/10.1088/1367-2630/13/5/053020 ADSCrossRefGoogle Scholar
  30. 30.
    S. Haze, M. Sasakawa, R. Saito, R. Nakai, T. Mukaiyama, Phys. Rev. Lett. 120, 043401 (2018).  https://doi.org/10.1103/PhysRevLett.120.043401 ADSCrossRefGoogle Scholar
  31. 31.
    K. Ravi, S. Lee, A. Sharma, G. Werth, S.A. Rangwala, Nat. Commun. 3, 1126 (2012).  https://doi.org/10.1038/ncomms2131 ADSCrossRefGoogle Scholar
  32. 32.
    S. Dutta, R. Sawant, S.A. Rangwala, Phys. Rev. Lett. 118, 113401 (2017).  https://doi.org/10.1103/PhysRevLett.118.113401 ADSCrossRefGoogle Scholar
  33. 33.
    I. Rouse, S. Willitsch, Phys. Rev. A 97, 042712 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    A. Krükow, A. Mohammadi, A. Härter, J. Hecker Denschlag, J. Pérez-Ríos, C.H. Greene, Phys. Rev. Lett. 116, 193201 (2016).  https://doi.org/10.1103/PhysRevLett.116.193201 ADSCrossRefGoogle Scholar
  35. 35.
    A. Krükow, A. Mohammadi, A. Härter, J. Hecker Denschlag, Phys. Rev. A 94, 030701(R) (2016).  https://doi.org/10.1103/PhysRevA.94.030701 ADSCrossRefGoogle Scholar
  36. 36.
    R. Côté, A. Dalgarno, Phys. Rev. A 62, 012709 (2000).  https://doi.org/10.1103/PhysRevA.62.012709 ADSCrossRefGoogle Scholar
  37. 37.
    M.D. Gregoire, I. Hromada, W.F. Holmgren, R. Trubko, A.D. Cronin, Phys. Rev. A 92, 052513 (2015).  https://doi.org/10.1103/PhysRevA.92.052513 ADSCrossRefGoogle Scholar
  38. 38.
    H. da Silva Jr, M. Raoult, M. Aymar, O. Dulieu, New J. Phys. 17, 045015 (2015).  https://doi.org/10.1088/1367-2630/17/4/045015 CrossRefGoogle Scholar
  39. 39.
    T. Secker, N. Ewald, J. Joger, H. Fürst, T. Feldker, R. Gerritsma, Phys. Rev. Lett. 118, 263201 (2017).  https://doi.org/10.1103/PhysRevLett.118.263201 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology (IQST)Universität UlmUlmGermany

Personalised recommendations