Advertisement

Applied Physics B

, 125:81 | Cite as

Tunable visible frequency combs from a Yb-fiber-laser-pumped optical parametric oscillator

  • Yuning Chen
  • Myles C. Silfies
  • Grzegorz Kowzan
  • Jose Miguel Bautista
  • Thomas K. AllisonEmail author
Article
  • 79 Downloads

Abstract

We present a 100 MHz repetition rate Yb-fiber-laser-pumped synchronously pumped optical parametric oscillator (SPOPO) delivering tunable frequency combs covering almost the entire visible spectral range. By intracavity doubling both the signal and idler combs and using collinear residual pump light, nearly continuous tuning over the range of 420–700 nm is achieved with only small gaps near the OPO degeneracy condition. Output powers range from 10 to 200 mW, depending on wavelength, with pulse durations below 150 fs without external compression. Frequency locking of all three collinearly outcoupled combs (pump, doubled signal, and doubled idler) to a femtosecond enhancement cavity facilitates direct comparison of their optical phase noise and phase modulation transfer functions. In the singly resonant OPO, optical phase modulation of the pump comb is transferred nearly completely to the non-resonant idler comb. This results in a resonant signal comb with reduced optical phase noise and also enables high-bandwidth modulation on the idler comb via phase modulation of the pump.

Notes

Acknowledgements

M.C. Silfies acknowledges support from the GAANN program of the U.S. Dept. of Education. G. Kowzan acknowledges support from the National Science Centre, Poland scholarship 2017/24/T/ST2/00242. We thank S.A. Diddams, H. Timmers, A. Kowligy, A. Lind, F.C. Cruz, N. Nader, and G. Ycas for helpful discussions and assistance with Er comb development.

Funding

This work was funded by the National Science Foundation (NSF) (1708743).

References

  1. 1.
    N.R. Newbury, Nat. Photonics 5(4), 186 (2011)ADSGoogle Scholar
  2. 2.
    A. Cingöz, D.C. Yost, T.K. Allison, A. Ruehl, M.E. Fermann, I. Hartl, J. Ye, Nature 482(7383), 68 (2012)ADSGoogle Scholar
  3. 3.
    H. Timmers, A. Kowligy, A. Lind, F.C. Cruz, N. Nader, M. Silfies, G. Ycas, T.K. Allison, P.G. Schunemann, S.B. Papp, S.A. Diddams, Optica 5(6), 727 (2018)Google Scholar
  4. 4.
    F. Quinlan, G. Ycas, S. Osterman, S.A. Diddams, Rev. Sci. Instrum. 81(6), 063105 (2010)ADSGoogle Scholar
  5. 5.
    Y. Yang, D. Burghoff, D.J. Hayton, J.R. Gao, J.L. Reno, Q. Hu, Optica 3(5), 499 (2016)Google Scholar
  6. 6.
    F. Adler, M.J. Thorpe, K.C. Cossel, J. Ye, Annu. Rev. Anal. Chem. 3(1), 175 (2010)Google Scholar
  7. 7.
    I. Coddington, N. Newbury, W. Swann, Optica 3(4), 414 (2016)Google Scholar
  8. 8.
    M.L. Weichman, P.B. Changala, J. Ye, Z. Chen, M. Yan, N. Picqué, J. Mol. Spectrosc. 355, 66 (2019)ADSGoogle Scholar
  9. 9.
    A. Schliesser, N. Picqué, T.W. Hansch, Nat. Photonics 6(7), 440 (2012)ADSGoogle Scholar
  10. 10.
    M. Seidel, X. Xiao, S.A. Hussain, G. Arisholm, A. Hartung, K.T. Zawilski, P.G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, F. Krausz, Sci. Adv. 4, 4 (2018)Google Scholar
  11. 11.
    N. Leindecker, A. Marandi, R.L. Byer, K.L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, P.G. Schunemann, Opt. Express 20(7), 7046 (2012)ADSGoogle Scholar
  12. 12.
    K.F. Lee, J. Jiang, C. Mohr, J. Bethge, M.E. Fermann, N. Leindecker, K.L. Vodopyanov, P.G. Schunemann, I. Hartl, Opt. Lett. 38(8), 1191 (2013)ADSGoogle Scholar
  13. 13.
    A. Ruehl, A. Gambetta, I. Hartl, M.E. Fermann, K.S.E. Eikema, M. Marangoni, Opt. Lett. 37(12), 2232 (2012)ADSGoogle Scholar
  14. 14.
    G. Soboń, T. Martynkien, P. Mergo, L. Rutkowski, A. Foltynowicz, Opt. Lett. 42(9), 1748 (2017)ADSGoogle Scholar
  15. 15.
    T. Steinle, F. Mörz, A. Steinmann, H. Giessen, Opt. Lett. 41(21), 4863 (2016)ADSGoogle Scholar
  16. 16.
    T. Steinle, A. Steinmann, R. Hegenbarth, H. Giessen, Opt. Express 22(8), 9567 (2014)ADSGoogle Scholar
  17. 17.
    M.A.R. Reber, Y. Chen, T.K. Allison, Optica 3(3), 311 (2016)Google Scholar
  18. 18.
    M. Barbatti, A.J.A. Aquino, H. Lischka, C. Schriever, S. Lochbrunner, E. Riedle, Phys. Chem. Chem. Phys. 11, 1406 (2009)Google Scholar
  19. 19.
    N. Kungwan, F. Plasser, A.J.A. Aquino, M. Barbatti, P. Wolschann, H. Lischka, Phys. Chem. Chem. Phys. 14, 9016 (2012)Google Scholar
  20. 20.
    M.F. Vansco, H. Li, M.I. Lester, J. Chem. Phys. 147(1), 013907 (2017)ADSGoogle Scholar
  21. 21.
    R. Berera, R. Grondelle, J. Kennis, Photosynth. Res. 101(2–3), 105 (2009)Google Scholar
  22. 22.
    K. Moutzouris, F. Adler, F. Sotier, D. Träutlein, A. Leitenstorfer, Opt. Lett. 31(8), 1148 (2006)ADSGoogle Scholar
  23. 23.
    H. Tu, S.A. Boppart, Opt. Express 17, 17983 (2009)ADSGoogle Scholar
  24. 24.
    W. Tian, Z. Wang, X. Meng, N. Zhang, J. Zhu, Z. Wei, Opt. Lett. 41(21), 4851 (2016)ADSGoogle Scholar
  25. 25.
    C. Cleff, J. Epping, P. Gross, C. Fallnich, Appl. Phys. B 103(4), 795 (2011)ADSGoogle Scholar
  26. 26.
    N. Coluccelli, D. Viola, V. Kumar, A. Perri, M. Marangoni, G. Cerullo, D. Polli, Opt. Lett. 42(21), 4545 (2017)ADSGoogle Scholar
  27. 27.
    C. Gu, M. Hu, L. Zhang, J. Fan, Y. Song, C. Wang, D.T. Reid, Opt. Lett. 38(11), 1820 (2013)ADSGoogle Scholar
  28. 28.
    C. Gu, M. Hu, J. Fan, Y. Song, B. Liu, L. Chai, C. Wang, D.T. Reid, Opt. Express 23(5), 6181 (2015)ADSGoogle Scholar
  29. 29.
    J. Fan, C. Gu, C. Wang, M. Hu, Opt. Express 24(12), 13250 (2016)ADSGoogle Scholar
  30. 30.
    R.A. McCracken, I. Gianani, A.S. Wyatt, D.T. Reid, Opt. Lett. 40(7), 1208 (2015)ADSGoogle Scholar
  31. 31.
    M. Ghotbi, A. Esteban-Martin, M. Ebrahim-Zadeh, Opt. Lett. 31(21), 3128 (2006)ADSGoogle Scholar
  32. 32.
    J.H. Sun, B.J.S. Gale, D.T. Reid, Opt. Lett. 32(11), 1414 (2007)ADSGoogle Scholar
  33. 33.
    R. Jason Jones, I. Thomann, J. Ye, Phys. Rev. A 69(5), 051803 (2004)ADSGoogle Scholar
  34. 34.
    Y. Kobayashi, K. Torizuka, A. Marandi, R.L. Byer, R.A. McCracken, Z. Zhang, D.T. Reid, J. Opt. 17(9), 094010 (2015)ADSGoogle Scholar
  35. 35.
    Y. Kobayashi, K. Torizuka, Opt. Lett. 25(11), 856 (2000)ADSGoogle Scholar
  36. 36.
    N.R. Newbury, W.C. Swann, J. Opt. Soc. Am. B 24(8), 1756 (2007)ADSGoogle Scholar
  37. 37.
    H. Telle, B. Lipphardt, J. Stenger, Appl. Phys. B 74(1), 1 (2002)ADSGoogle Scholar
  38. 38.
    B. Lomsadze, S.T. Cundiff, Science 357(6358), 1389 (2017)ADSMathSciNetGoogle Scholar
  39. 39.
    J. Bergevin, T.H. Wu, J. Yeak, B.E. Brumfield, S.S. Harilal, M.C. Phillips, R.J. Jones, Nat. Commun. 9(1), 1273 (2018)ADSGoogle Scholar
  40. 40.
    M. Liebel, C. Toninelli, N.F. van Hulst, Nat. Photonics 12(1), 45 (2018)ADSGoogle Scholar
  41. 41.
    D. Polli, V. Kumar, C.M. Valensise, M. Marangoni, G. Cerullo, Laser Photonics Rev. 12(9), 1800020 (2018)ADSGoogle Scholar
  42. 42.
    D.L. Maser, G. Ycas, W.I. Depetri, F.C. Cruz, S.A. Diddams, Appl. Phys. B 123(5), 142 (2017)ADSGoogle Scholar
  43. 43.
    X. Li, M.A.R. Reber, C. Corder, Y. Chen, P. Zhao, T.K. Allison, Rev. Sci. Instrum. 87(9), 093114 (2016)ADSGoogle Scholar
  44. 44.
    C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, S. Lin, J. Opt. Soc. Am. B 6, 616 (1989)ADSGoogle Scholar
  45. 45.
    A.E. Siegman, Lasers (University Science Books, Sausalito, 1986)Google Scholar
  46. 46.
    SNLO Nonlinear Optics Code available from A.V. Smith, AS-Photonics, Albuquerque, NM, 2018Google Scholar
  47. 47.
    T.C. Briles, D.C. Yost, A. Cingöz, J. Ye, T.R. Schibli, Opt. Express 18(10), 9739 (2010)ADSGoogle Scholar
  48. 48.
    H. Mashiko, A. Suda, K. Midorikawa, Appl. Phys. B Lasers Opt. 76(5), 525 (2003)ADSGoogle Scholar
  49. 49.
    M. Wunram, P. Storz, D. Brida, A. Leitenstorfer, Opt. Lett. 40(5), 823 (2015)ADSGoogle Scholar
  50. 50.
    Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984)Google Scholar
  51. 51.
    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B Lasers Opt. 31, 97 (1983)ADSGoogle Scholar
  52. 52.
    M.C. Silfies, G. Kowzan, Y. Chen, J.M. Bautista, S.A. Diddams, T.K. Allison, in preparationGoogle Scholar
  53. 53.
    M. Zhu, J.L. Hall, J. Opt. Soc. Am. B 10, 802 (1993)ADSGoogle Scholar
  54. 54.
    W. Nagourney, Quantum Electronics for Atomic Physics (Oxford University Press, Oxford, 2010)zbMATHGoogle Scholar
  55. 55.
    J.C. Bienfang, R.F. Teehan, C.A. Denman, Rev. Sci. Instrum. 72(8), 3208 (2001)ADSGoogle Scholar
  56. 56.
    C. Wan, P. Li, A. Ruehl, I. Hartl, Opt. Lett. 43(5), 1059 (2018)ADSGoogle Scholar
  57. 57.
    T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, T.W. Hansch, Nature 502(7471), 355 (2013)ADSGoogle Scholar
  58. 58.
    N. Hoghooghi, R.J. Wright, A.S. Makowiecki, W.C. Swann, E.M. Waxman, I. Coddington, G.B. Rieker, Optica 6(1), 28 (2019)Google Scholar
  59. 59.
    C. Benko, A. Ruehl, M.J. Martin, K.S.E. Eikema, M.E. Fermann, I. Hartl, J. Ye, Opt. Lett. 37(12), 2196 (2012)ADSGoogle Scholar
  60. 60.
    M. Ebrahimzadeh, P. Phillips, S. Das, Appl. Phys. B 72(7), 793 (2001)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuning Chen
    • 1
  • Myles C. Silfies
    • 1
  • Grzegorz Kowzan
    • 2
  • Jose Miguel Bautista
    • 1
  • Thomas K. Allison
    • 1
    Email author
  1. 1.Departments of Chemistry and PhysicsStony Brook UniversityStony BrookUSA
  2. 2.Institute of Physics, Faculty of Physics, Astronomy and InformaticsNicolaus Copernicus UniversityToruńPoland

Personalised recommendations