Applied Physics B

, 125:79 | Cite as

Propagation of a radially polarized partially coherent rotating elliptical cosine-Gaussian beam with vortices in anisotropic turbulence

  • Liping Zhang
  • Dongmei DengEmail author
  • Xingyu Chen
  • Fang Zhao
  • Jingli Zhuang
  • Xiangbo Yang
  • Guanghui Wang
  • Hongzhan Liu


Optical vortices in anisotropic turbulence media can exhibit propagation dynamics similar to hydrodynamic vortex phenomena. We theoretically research the propagation of higher-order vortices and the polarization characteristic of the radially polarized partially coherent rotating elliptical Gaussian vortex (PCRECGV) beam. We demonstrate that the vortices can change the shape, the pattern and the polarization of the radially polarized PCRECGV beam during the transmission. The peak intensity of the radially polarized PCRECGV beam with various structure constants of the turbulence is elucidated. The influences of the rotation parameter, the beam order parameter, and the initial beam waist on the propagation of a radially polarized PCRECGV beam in anisotropic turbulence are also examined in detail. We find that during the transmission, the vortices in the beam gradually split into multiple vortices and then the vortices of beamlets annihilate as the propagating distance increases. Meanwhile, when the transmission distance is large enough, the radially polarized PCRECGV beam rotates about \(90^{\circ }\) during the propagation. By choosing appropriate parameters of the beam, we can adjust the propagation pattern to the one desired and control the spectral polarization states so as to alleviate the influence of the anisotropic turbulence effectively. The numerical experiments are consistent with the analytic solutions. Our paper provides some cases of one to five vortices in different locations, while the different patterns can be extrapolated to more situations.



National Natural Science Foundation of China (11775083, 11374108, 11674107, 61875057); Innovation Project of Graduate School of South China Normal University(2018LKXM012).


  1. 1.
    A.S. Desyatnikov, L. Torner, Y.S. Kivshar, Optical vortices and vortex solitons. Proc. SPIE 5508, 16–31 (2004)CrossRefGoogle Scholar
  2. 2.
    X.L. Wang, J. Chen, Y. Li, J. Ding, C.S. Guo, H.T. Wang, Optical orbital angular momentum from the curl of polarization. Phys. Rev. Lett. 105, 253602 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    J. Wang, J.Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A.E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    J.A. Anguita, M.A. Neifeld, B.V. Vasic, Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. Appl. Opt. 47, 2414–2429 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    M. Malik, M. O’Sullivan, B. Rodenburg, Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt. Express 20, 13195–13200 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    M. Mohammad, S.M. Omar, N.O. Malcolm, R. Brandon, M. Mehul, P.J. Martin, J.P. Miles, J.G. Daniel, W.B. Robert, High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 033033 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Yu, W. She, Rotation dynamics of particles trapped in a rotating beam. J. Opt. Soc. Am. A 32, 90–100 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    C. Rosales-Guzm\(\acute{a}\)n, M. Mazilu, J. Baumgartl, R. Rodríguez-Fajardo, K. Ramos-García, K. Dholakia, Collision of propagating vortices embedded within Airy beams. J. Opt. 15, 44001 (2013)Google Scholar
  9. 9.
    F. Lenzini, S. Residori, F.T. Arecchi, U. Bortolozzo, Optical vortex interaction and generation via nonlinear wave mixing. Phys. Rev. A 84, 061801 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    W. Walasik, S.Z. Silahli, N.M. Litchinitser, Dynamics of necklace beams in nonlinear colloidal suspensions. Sci. Rep. 7, 11709 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    T.J. Alexander, Y.S. Kivshar, A.V. Buryak, R.A. Sammu, Optical vortex solitons in parametric wave mixing. Phys. Rev. E 61, 2042–2049 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    J.C. Mcwilliams, J.B. Weiss, I. Yavneh, Anisotropy and coherent vortex structures in planetary turbulence. Science 264, 410–413 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, A. Zeilinger, Communication with spatially modulated light through turbulent air across Vienna. New J. Phys. 16, 113028 (2014)CrossRefGoogle Scholar
  14. 14.
    C. Paterson, Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94, 153901 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    M. Li, M. Cvijetic, Y. Takashima, Z. Yu, Evaluation of channel capacities of OAM-based FSO link with real-time wave front correction by adaptive optics. Opt. Express 22, 31337–31346 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Huang, F. Wang, Z. Gao, B. Zhang, Propagation properties of partially coherent electromagnetic hyperbolic-sine-Gaussian vortex beams through non-Kolmogorov turbulence. Opt. Express 23, 1088–1102 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Yuan, D. Liu, Z. Zhou, H. Xu, J. Qu, Y. Cai, Optimization of the probability of orbital angular momentum for Laguerre–Gaussian beam in Kolmogorov and non-Kolmogorov turbulence. Opt. Express 26, 21861–21871 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    L. C. Andrews , R. L. Phillips, Laser Beam Propagation through Random Medium, 2nd ed. (SPIE) (2005)Google Scholar
  19. 19.
    Z.I. Feizulin, Y.A. Kravtsov, Broadening of a laser beam in a turbulent medium. Radiophys. Q. Electron. 10, 33–35 (1967)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Cai, S. He, Average intensity and spreading of an elliptical Gaussian beam propagating in a turbulent atmosphere. Opt. Lett. 31, 568–570 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    V.P. Aksenov, V.L. Mironov, Phase approximation of the Huygens–Kirchhoff method in problems of reflections of optical waves in the turbulent atmosphere. J. Opt. Soc. Am. 69, 1609–1614 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    H.T. Eyyuboǧlu, Y. Baykal, Analysis of reciprocity of cos-Gaussian and cosh-Gaussian laser beams in turbulent atmosphere. Opt. Express 12, 4659–4674 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    C. Arpali, C. Yazicioglu, H.T. Eyyuboǧlu, S.A. Arpali, Y. Baykal, Simulator for general-type beam propagation in turbulent atmosphere. Opt. Express 14, 8918–8928 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    M.H. Mahdieh, Numerical approach to laser beam propagation through turbulent atmosphere and evaluation of beam quality factor. Opt. Commun. 281, 3395–3402 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    C.Z. Çil, H.T. Eyyuboǧlu, Y. Baykal, O. Korotkova, Y. Cai, Beam wander of \(J_0\)-and \(I_0\)-bessel Gaussian beams propagating in turbulent atmosphere. Appl. Phys. B 98, 195–202 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    H.T. Eyyuboǧlu, Ç. Arpali, Y. Baykal, Flat topped beams and their characteristics in turbulent media. Opt. Express 14, 4196–4207 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    X. Liu, F. Wang, C. Wei, Y. Cai, Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam. Opt. Lett. 39, 3336–3339 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    H.T. Yura, R.A. Fields, Level crossing statistics for optical beam wander in a turbulent atmosphere with applications to ground-to-space laser communications. Appl. Opt. 50, 2875–2885 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    G. Gbur, E. Wolf, Spreading of partially coherent beams in random media. J. Opt. Soc. Am. A 19, 1592–1598 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    H.T. Eyyuboǧlu, Y. Baykal, Average intensity and spreading of cosh-Gaussian laser beams in the turbulent atmosphere. Appl. Opt. 44, 976–983 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    L. Cui, B. Xue, L. Gao, S. Zheng, W. Xue, X. Bai, X. Cao, F. Zhou, Irradiance scintillation for Gaussian-beam wave propagating through weak non-Kolmogorov turbulence. Opt. Express 19, 16872–16884 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Wu, Y. Zhang, Y. Li, Z. Hu, Beam wander of Gaussian–Schell model beams propagating through oceanic turbulence. Opt. Commun. 371, 59–66 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    W. Fu, H. Zhang, Propagation properties of partially coherent radially polarized doughnut beam in turbulent ocean. Opt. Commun. 304, 11–18 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Z. Zhou, M. Guo, D. Zhao, Propagation of specular and anti-specular Gaussian Schellmodel beams in oceanic turbulence. Opt. Commun. 383, 287–293 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Baykal, BER of asymmetrical optical beams in oceanic and marine atmospheric media. Opt. Commun. 393, 29–33 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    J.C. Ricklin, F.M. Davidson, Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication. J. Opt. Soc. Am. A 19, 1794–1802 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    A. Dogariu, S. Amarande, Propagation of partially coherent beam turbulence-induced degradation. Opt. Lett. 28, 10–12 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    T. Wang, J. Pu, Z. Chen, Propagation of partially coherent vortex beams in a turbulent atmosphere. Opt. Eng. 47, 036002 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    D.M. Deng, Q. Guo, Analytical vectorial structure of radially polarized light beams. Opt. Lett. 32, 2711–2713 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    D.M. Deng, Nonparaxial propagation of radially polarized light beams. J. Opt. Soc. Am. B Opt. Phys. 23, 1228–1234 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    D.M. Deng, Q. Guo, L.J. Wu, X.B. Yang, Propagation of radially polarized elegant light beams. J. Opt. Soc. Am. B Opt. Phys. 24, 636–643 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    T.F. Zhong, J.B. Zhang, L.Y. Feng, Z.H. Pang, L.Y. Wang, D.M. Deng, Propagation properties of radially and azimuthally polarized chirped-Airy vortex beams through slabs of right-handed materials and left-handed materials. J. Opt. Soc. Am. B Opt. Phys. 35, 1354–1361 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    C.J. Xu, L.D. Lin, Z.Z. Huang, Y.Z. Chen, X.B. Yang, H.Z. Liu, D.M. Deng, Propagation of a radially polarized Pearcey beam in uniaxial crystals. Laser Phys. 28, 115001 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    J.T. Xie, J.B. Zhang, X.T. Zheng, J.R. Ye, D.M. Deng, Paraxial propagation dynamics of the radially polarized Airy beams in uniaxial crystals orthogonal to the optical axis. Opt. Express 26, 11309–11320 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    J. Tervo, T. Setälä, A. Friberg, Degree of coherence for electromagnetic fields. Opt. Express 11, 1137–1143 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    J. Wang, S. Zhu, H. Wang, Y. Cai, Z. Li, Second-order statistics of a radially polarized cosine-Gaussian correlated Schell-model beam in anisotropic turbulence. Opt. Express 24, 11626–11639 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    H. Liu, Y. Lü, J. Xia, D. Chen, W. He, X. Pu, Radial phased-locked partially coherent flat topped vortex beam array in non-Kolmogorov medium. Opt. Express 24, 19695–19712 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    J. Zhang, J. Xie, D. Deng, Second-order statistics of a partially coherent electromagnetic rotating elliptical Gaussian vortex beam through non-Kolmogorov turbulence. Opt. Express 26, 21249–21257 (2018)ADSCrossRefGoogle Scholar
  49. 49.
    S. Zhu, Y. Chen, J. Wang, H. Wang, Z. Li, Y. Cai, Generation and propagation of a vector cosine-Gaussian correlated beam with radial polarization. Opt. Express 23, 33099–33115 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    O. Korotkova, E. Wolf, Changes in the state of polarization of a random electromagnetic beam on propagation. Opt. Commun. 246, 35–43 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    F. Ye, J. Zhang, J. Xie, D. Deng, Propagation properties of the rotating elliptical chirped Gaussian vortex beam in the oceanic turbulence. Opt. Commun. 426, 456–462 (2018)ADSCrossRefGoogle Scholar
  52. 52.
    M. Yao, I. Toselli, O. Korotkova, Propagation of electromagnetic stochastic beams in anisotropic turbulence. Opt. Express 22, 31608–31619 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    R.Z. Rao, Optical vortices and its propagation in the atmosphere. Infrared Laser Eng. 38, 609–615 (2009). (in Chinese)Google Scholar
  54. 54.
    A. Bekshaev, M. Soskin, Rotational transformations and transverse energy flow in paraxial light beams: Linear azimuthons. Opt. Lett. 31, 2199–2201 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    X. Chen, J. Zhuang, X. Peng, D. Li, L. Zhang, F. Zhao, D. Deng, Spatiotemporal autofocused chirped Pearcey Pearcey Gaussian wave packets with an adjustable focus in a quadratic-index medium. Opt. Laser Technol. 109, 518–524 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and DevicesSouth China Normal UniversityGuangzhouChina

Personalised recommendations