Advertisement

Applied Physics B

, 125:78 | Cite as

A laser diagnostic at 427 nm for quantitative measurements of CH in a shock tube

  • C. R. MulvihillEmail author
  • M. W. Crofton
  • D. G. Arnold
  • E. L. Petersen
  • K. Y. Lam
Article
  • 40 Downloads

Abstract

The methylidyne radical (CH) is a hydrocarbon combustion intermediate of great importance in the prompt formation of NO, a highly regulated pollutant. Recent work in modeling the combustion chemistry of NO has highlighted the need for further study of CH and its associated high-temperature chemistry. This paper details the new development of a fixed-wavelength, cw laser absorption diagnostic for measurements of CH at high temperatures behind reflected shock waves. A detailed spectroscopic model was utilized to predict CH absorption within the A ← X band of CH, and the broadening coefficient of the selected blended transition was measured in a series of fixed-wavelength measurements. A demonstration of the diagnostic was performed in highly Ar-diluted C2H6/O2 and CH4/O2 mixtures between 1750 and 3050 K near 101 kPa. For both mixtures, experimental peak levels of CH were found to be generally overestimated by 40–80% by two chemical kinetics mechanisms. Such discrepancies highlight the need for further refinement of CH chemistry, which could be facilitated through future applications of this diagnostic and through the data provided herein. To the best of the authors’ knowledge, this study provides the first CH profiles measured in C2H6 oxidation.

Notes

Acknowledgments

This work was funded in part by the TEES Turbomachinery Laboratory and the Aerospace Corporation’s Internal Research and Development program. A critical portion of the CH diagnostic setup was funded by Siemens Canada, with Dr. Gilles Bourque as project monitor. Additional funding came from the National Science Foundation, Grant Number CBET-1706825. The authors wish to thank J.L. Elms for significant contributions to the preparation of this manuscript.

Supplementary material

340_2019_7188_MOESM1_ESM.docx (669 kb)
Supplementary material 1 (DOCX 669 kb)

References

  1. 1.
    J. Kojima, Y. Ikeda, T. Nakajima, Proc. Comb. Inst. 28, 1757 (2000)CrossRefGoogle Scholar
  2. 2.
    J.A. Miller, C.T. Bowman, Prog. Ener. Comb. Sci. 15, 287 (1989)CrossRefGoogle Scholar
  3. 3.
    C.P. Fenimore, Symp. (Int.) on Combust. 13, 373 (1971)CrossRefGoogle Scholar
  4. 4.
    P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Prog. Energy Comb. Sci. 67, 31 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Luque, R.J.H. Klein-Douwel, J.B. Jeffries, G.P. Smith, D.R. Crosley, App. Phys. B 75, 779 (2002)ADSGoogle Scholar
  6. 6.
    R. Evertsen, R.L. Stolk, J.J. Ter Meulen, Comb. Sci. Tech. 149, 19 (1999)CrossRefGoogle Scholar
  7. 7.
    A.J. Dean, R.K. Hanson, J. Quant. Spec. Rad. Trans. 42, 375 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    A.J. Dean, R.K. Hanson, C.T. Bowman, Symp. (Int.) on Combust. 23, 259 (1991)CrossRefGoogle Scholar
  9. 9.
    V. Vasudevan, R.K. Hanson, C.T. Bowman, D.M. Golden, D.F. Davidson, J. Phys. Chem. A 111, 11818 (2007)CrossRefGoogle Scholar
  10. 10.
    A.J. Dean, R.K. Hanson, Int. J. Chem. Kin. 24, 517 (1992)CrossRefGoogle Scholar
  11. 11.
    D. Woiki, M. Votsmeier, D.F. Davidson, R.K. Hanson, C.T. Bowman, Combust. Flame 113, 624 (1998)CrossRefGoogle Scholar
  12. 12.
    M. Röhrig, E.L. Petersen, D.F. Davidson, R.K. Hanson, C.T. Bowman, Int. J. Chem. Kin. 29, 781 (1997)CrossRefGoogle Scholar
  13. 13.
    V. Vasudevan, R.K. Hanson, D.M. Golden, C.T. Bowman, D.F. Davidson, J. Phys. Chem. A 111, 4062 (2007)CrossRefGoogle Scholar
  14. 14.
    M.W. Markus, D. Woiki, P. Roth, Symp. (Int.) on Combust. 24, 581 (1992)CrossRefGoogle Scholar
  15. 15.
    M.W. Markus, P. Roth, A.M. Tereza, Symp. (Int.) on Combust. 25, 705 (1994)CrossRefGoogle Scholar
  16. 16.
    M.W. Markus, P. Roth, T. Just, Int. J. Chem. Kin. 28, 171 (1996)CrossRefGoogle Scholar
  17. 17.
    E.L. Petersen, M.J. Rickard, M.W. Crofton, E.D. Abbey, M.J. Traum, D.M. Kalitan, Meas. Sci. Tech. 16, 1716 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    J.C. Luque, D.R., (SRI International, Menlo Park, CA, SRI International Report MP 99-0099, 1999)Google Scholar
  19. 19.
    M. Zachwieja, J. Mol. Spectr. 170, 285 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    C.R. Brazier, J.M. Brown, Canadian. J. Phys. 62, 1563 (1984)ADSGoogle Scholar
  21. 21.
    G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg et al., http://www.me.berkeley.edu/gri_mech/(1999)
  22. 22.
    C.-W. Zhou, Y. Li, U. Burke, C. Banyon, K.P. Somers, S. Ding et al., Combust. Flame 197, 423 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • C. R. Mulvihill
    • 1
    Email author
  • M. W. Crofton
    • 2
  • D. G. Arnold
    • 2
  • E. L. Petersen
    • 1
  • K. Y. Lam
    • 2
  1. 1.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Space Materials LaboratoryThe Aerospace CorporationEl SegundoUSA

Personalised recommendations