Advertisement

Applied Physics B

, 125:77 | Cite as

GaN nanowire arrays for photocatalytic applications II: influence of a dielectric shell and liquid environments

  • Julia WinnerlEmail author
  • Max Kraut
  • Richard Hudeczek
  • Martin Stutzmann
Article
  • 104 Downloads

Abstract

GaN nanowires (NWs) are promising candidates for photocatalytic devices due to their large surface-to-volume ratio and their waveguide character. Protective coatings and nanoparticle co-catalysts are widely used to improve the stability and the photocatalytic activity of semiconductors in liquid electrolytes. Here, we present a systematic experimental study of the influence of a dielectric shell and liquid environments on the interaction of light with GaN NW arrays related to photocatalytic applications. Transmission measurements on bare GaN NWs and core–shell NWs with varying shell thickness and refractive index of the shell reveal a shift of the transmission minima that originate from the coupling of light to various waveguide modes supported within the NWs. This shift is a result of the shift of the dispersion relations of the modes for core–shell NWs. The transmission spectra of GaN NWs in liquid environments show a spatial and spectral shift. These results are explained by the dependence of both, the waveguide properties of the single NWs and the photonic crystal characteristics of the NW array, on the refractive index of the environment. A comparison of the experimental findings with numerical simulations shows a good agreement.

Notes

Acknowledgements

Financial support from TUM.solar in the frame of the Bavarian Collaborative Research Project “Solar technologies go Hybrid” (SolTec), the excellence cluster Nanosystems Initiative Munich (NIM), and the Deutsche Forschungsgemeinschaft (DFG) via the Forschergruppe 1493 is gratefully acknowledged. Furthermore, we thank Gabi Riedl for the sputtering of the \(\hbox {SiO}_{2}\) shells.

References

  1. 1.
    T. Kida, Y. Minami, G. Guan, M. Nagano, M. Akiyama, A. Yoshida, Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation. J. Mater. Sci. 41(11), 3527–3534 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    H.S. Jung, Y.J. Hong, Y. Li, J. Cho, Y.-J. Kim, G.-C. Yi, Photocatalysis using GaN nanowires. ACS Nano 2, 637–642 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Wang, A. Pierre, M.G. Kibria, K. Cui, X. Han, K.H. Bevan, H. Guo, S. Paradis, A.R. Hakima, Z. Mi, Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett. 11(6), 2353–7 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    B. AlOtaibi, H.P. Nguyen, S. Zhao, M.G. Kibria, S. Fan, Z. Mi, Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode. Nano Lett. 13(9), 4356–61 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    M.G. Kibria, F.A. Chowdhury, S. Zhao, B. AlOtaibi, M.L. Trudeau, H. Guo, Z. Mi, Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nat. Commun. 6, 6797 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    P. Neuderth, P. Hille, J. Schrmann, A. Frank, C. Reitz, S. Martí-Sánchez, M. de la Mata, M. Coll, J. Arbiol, R. Marschall, M. Eickhoff, Passivation layers for nanostructured photoanodes: ultra-thin oxides on InGaN nanowires. J. Mater. Chem. A 6(2), 565–573 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Pschenitza, S. Meister, A. von Weber, A. Kartouzian, U. Heiz, B. Rieger, Suppression of deactivation processes in photocatalytic reduction of \(\text{ CO }_{2}\) using pulsed light. ChemCatChem 8(16), 2688–2695 (2016)CrossRefGoogle Scholar
  8. 8.
    E. Calleja, M. Sanchez-Garcia, F.J. Sanchez, F. Calle, F.B. Naranjo, E. Munoz, U. Jahn, K. Ploog, Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy. Phys. Rev. B 62, 16826 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    F. Schuster, F. Furtmayr, R. Zamani, C. Magen, J.R. Morante, J. Arbiol, J.A. Garrido, M. Stutzmann, Self-assembled GaN nanowires on diamond. Nano Lett. 12(5), 2199–204 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M. Wolz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernandez-Garrido, O. Brandt, H.T. Grahn, L. Geelhaar, H. Riechert, Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film. Nano Lett. 15(6), 3743–7 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    V. Kumaresan, L. Largeau, F. Oehler, H. Zhang, O. Mauguin, F. Glas, N. Gogneau, M. Tchernycheva, J.C. Harmand, Self-induced growth of vertical GaN nanowires on silica. Nanotechnology 27(13), 135602 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    J. Winnerl, R. Hudeczek, M. Stutzmann, Optical design of GaN nanowire arrays for photocatalytic applications. J. Appl. Phys. 123, 203104 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    R.S. Frederiksen, E. Alarcon-Llado, M.H. Madsen, K.R. Rostgaard, P. Krogstrup, T. Vosch, J. Nygard, I.Morral A. Fontcuberta, K.L. Martinez, Modulation of fluorescence signals from biomolecules along nanowires due to interaction of light with oriented nanostructures. Nano Lett. 15(1), 176–81 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Rune S Frederiksen, Esther Alarcon-Llado, Peter Krogstrup, Laura Bojarskaite, Nina Buch-Mnson, Jessica Bolinsson, Jesper Nygrd, Anna Fontcuberta i Morral, Karen L Martinez, Nanowire-aperture probe: Local enhanced fluorescence detection for the investigation of live cells at the nanoscale. ACS Photon. 3(7), 1208–1216 (2016)CrossRefGoogle Scholar
  15. 15.
    X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductot-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)CrossRefGoogle Scholar
  16. 16.
    L. Han, M. Lin, S. Haussener, Reliable performance characterization of mediated photocatalytic water-splitting half reactions. ChemSusChem 10(10), 2158–2166 (2017)CrossRefGoogle Scholar
  17. 17.
    Hu Shu, Nathan S. Lewis, Joel W. Ager, Jinhui Yang, James R. McKone, Nicholas C. Strandwitz, Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. J. Phys. Chem. C 119(43), 24201–24228 (2015)CrossRefGoogle Scholar
  18. 18.
    G. Siddiqi, Z. Luo, Y. Xie, Z. Pan, Q. Zhu, J.A. Rohr, J.J. Cha, S. Hu, Stable water oxidation in acid using manganese-modified TiO\(_{2}\) protective coatings. ACS Appl. Mater. Interfaces 10, 18805 (2018)CrossRefGoogle Scholar
  19. 19.
    Nicklas Anttu, Alireza Abrand, Damir Asoli, Magnus Heurlin, Ingvar Åberg, Lars Samuelson, Magnus Borgström, Absorption of light in inp nanowire arrays. Nano Res. 7(6), 816–823 (2014)CrossRefGoogle Scholar
  20. 20.
    Shu Hu, Chun-Yung Chi, Katherine T. Fountaine, Maoqing Yao, Harry A. Atwater, P. Daniel Dapkus, Nathan S. Lewis, and Chongwu Zhou. Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes. Energy Environ. Sci., 6(6), (2013)Google Scholar
  21. 21.
    N. Anttu, V. Dagytè, X. Zeng, G. Otnes, M. Borgström, Absorption and transmission of light in III-V nanowire arrays for tandem solar cell applications. Nanotechnology 28(20), 205203 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Anis Attiaoui, Stephan Wirth, André-Pierre Blanchard-Dionne, Michel Meunier, J. M. Hartmann, Dan Buca, and Oussama Moutanabbir. Extreme ir absorption in group iv-sigesn core–shell nanowires. J. Appl. Phys., 123(22), (2018)Google Scholar
  23. 23.
    V. Dagyté, N. Anttu, Modal analysis of resonant and non-resonant optical response in semiconductor nanowire arrays. Nanotechnology 30(2), 025710 (2019)ADSCrossRefGoogle Scholar
  24. 24.
    F. Schuster, M. Hetzl, S. Weiszer, J.A. Garrido, M. de la Mata, C. Magen, J. Arbiol, M. Stutzmann, Position-controlled growth of GaN nanowires and nanotubes on diamond by molecular beam epitaxy. Nano Lett. 15(3), 1773–9 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Lumerical inc., (2018). http://www.lumerical.com/tcad-products/fdtd/,2018-05-23
  26. 26.
    Lumerical inc., (2018). http://www.lumerical.com/tcad-products/mode/, 2018-05-23
  27. 27.
    B. Wang, P.W. Leu, Tunable and selective resonant absorption in vertical nanowires. Opt. Lett. 37, 3756–3758 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    J. Chesin, S. Gradečak, Comparing directed efficiency of III-nitride nanowire light-emitting diodes. J. Nanophoton. 8(1), 083095 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Wu, Z. Xia, Z. Liang, J. Zhou, H. Jiao, H. Cao, X. Qin, Broadband absorption enhancement in elliptical silicon nanowire arrays for photovoltaic applications. Opt. Express 22, A1292–302 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    N. Dhindsa, J. Walia, S.S. Saini, A platform for colorful solar cells with enhanced absorption. Nanotechnology 27(49), 495203 (2016)CrossRefGoogle Scholar
  31. 31.
    A.W. Snyder, J.D. Love, Optical waveguide theory, 1st edn. (Chapman and Hall, New York, 1983)Google Scholar
  32. 32.
    S. Mokkapati, D. Saxena, H.H. Tan, C. Jagadish, Optical design of nanowire absorbers for wavelength selective photodetectors. Sci. Rep. 5, 15339 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    G. Ghosh, Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun. 163, 95 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    W.L. Bond, Measurement of the refractive indices of several crystals. J. Appl. Phys. 36(5), 1674–1677 (1965)ADSCrossRefGoogle Scholar
  35. 35.
    G.M. Hale, M.R. Querry, Optical constants of water in the 200-nm to 200-m wavelength region. Appl. Opt. 12, 555 (1973)ADSCrossRefGoogle Scholar
  36. 36.
    I.Z. Kozma, P. Krok, E. Riedle, Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet. J. Opt. Soc. Am. B 22, 1479 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    Konstantinos Moutzouris, Myrtia Papamichael, Sokratis C. Betsis, Ilias Stavrakas, George Hloupis, Dimos Triantis, Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B 116(3), 617–622 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Shanhui Fan, J .D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65(23), 235112 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    A. Rosenberg, M.W. Carter, J.A. Casey, M. Kim, R.T. Holm, R.L. Henry, C.R. Eddy, V.A. Shamamian, K. Bussmann, S. Shi, D.W. Prather, Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum. Opt. Express 13, 6564 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    J. Song, R.P. Zaccaria, M.B. Yu, X.W. Sun, Tunable Fano resonance in photonic crystal slabs. Opt. Express 14, 8812 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic crystals: Molding the flow of light, 2nd edn. (Princeton University Press, Princeton, 2007)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Walter Schottky Institut and Physics DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations