Applied Physics B

, 125:76 | Cite as

A Lagrangian interpolation-assisted direct laser absorption spectrum analyzer based on digital signal processor for methane detection

  • Di Yu
  • Yanwen Zhou
  • Fang Song
  • Weilin YeEmail author
  • Yue Yang
  • Yu Zhang
  • Yiding Wang
  • Chuantao ZhengEmail author
  • Frank K. Tittel


A novel Lagrangian interpolation-based direct laser absorption spectroscopy (LI-DLAS) technique was presented to suppress noise in infrared gas detection by incorporating Lagrangian interpolation and nonlinear least-square fitting (NLLSF). An LI-DLAS analyzer was reported for methane (CH4) detection using a 1654 nm distributed feedback (DFB) laser, a compact digital signal processor (DSP), and a multi-pass gas cell (MPGC) with a 16 m optical path length. The performance of the developed LI-DLAS CH4 analyzer was evaluated by means of laboratory experiments. Compared with the traditional DLAS-based sensor without Lagrangian interpolation, the detection sensitivity was improved from 6 ppmv to 2 ppmv, and the detection stability was enhanced as the Allan–Werle deviation was dropped from 1.514 to 0.531 ppmv for a 1 s averaging time. Compared with a DLAS analyzer based on LabVIEW platform, the DSP-based CH4 analyzer shows the merits of compact size and low cost with potential filed-deployable applications in industrial monitoring and control.



The National Key R&D Program of China (No. 2017YFB0405300), National Natural Science Foundation of China (Nos. 61775079, 61627823), Science and Technology Development Program of Jilin Province, China (Nos. 20180201046GX, 20190101016JH), Industrial Innovation Program of Jilin Province, China (No. 2017C027), and the National Science Foundation (NSF) ERC MIRTHE award and Robert Welch Foundation (No. C0586) are acknowledged.


  1. 1.
    W. Ren, W.Z. Jiang, F.K. Tittel, Single-QCL-based absorption sensor for simultaneous trace-gas detection of CH4 and N2O. Appl. Phys. B Lasers Opt. 117(1), 245–251 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    C.T. Zheng, W.L. Ye, N.P. Sanchez, C.G. Li, L. Dong, Y.D. Wang, R.J. Griffin, F.K. Tittel, Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy. Sens. Actuat. B Chem. 244, 365–372 (2017)CrossRefGoogle Scholar
  3. 3.
    W.L. Ye, C.G. Li, C.T. Zheng, N.P. Sanchez, A.K. Gluszek, A.J. Hudzikowski, L. Dong, R.J. Griffin, F.K. Tittel, Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser. Opt. Express 24(15), 16973–16985 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    E.S.F. Berman, M. Fladeland, J. Liem, R. Kolyer, M. Gupta, Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle. Sens. Actuat. B Chem. 169, 128–135 (2012)CrossRefGoogle Scholar
  5. 5.
    W.W. Ding, L.Q. Sun, L.Y. Yi, E.Y. Zhang, ‘Baseline-offset’ scheme for a methane remote sensor based on wavelength modulation spectroscopy. Meas. Sci. Technol. 27(8), 085202 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    A. Groth, C. Maurer, M. Reiser, M. Kranert, Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry. Biores. Technol. 178, 359–361 (2015)CrossRefGoogle Scholar
  7. 7.
    N.P. Sanchez, C.T. Zheng, W.L. Ye, B. Czader, D.S. Cohan, F.K. Tittel, R.J. Griffin, Exploratory study of atmospheric methane enhancements derived from natural gas use in the Houston urban area. Atmos. Environ. 176, 261–273 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    M. Dong, C.T. Zheng, S.Z. Miao, Y. Zhang, Q.L. Du, Y.D. Wang, F.K. Tittel, Development and measurements of a mid-infrared multi-gas sensor system for CO, CO2 and CH4 detection. Sensors 17(10), 2221 (2017)CrossRefGoogle Scholar
  9. 9.
    A.R. Brandt, G.A. Heath, E.A. Kort, F. O’Sullivan, G. Petron, S.M. Jordaan, P. Tans, J. Wilcox, A.M. Gopstein, D. Arent, S. Wofsy, N.J. Brown, R. Bradley, G.D. Stucky, D. Eardley, R. Harriss, Energy and environment. Methane leaks from North American natural gas systems. Science 343(6172), 733–735 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    R.A. Alvarez, S.W. Pacala, J.J. Winebrake, W.L. Chameides, S.P. Hamburg, Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. 109(17), 6435–6440 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    J. Jiang, G. M. Ma, H. T. Song, C. R. Li, Y. T. Luo, and H. B. Wang, Highly sensitive detection of methane based on tunable diode laser absorption spectrum. IEEE Conf. Int. Instrum. Measur. Technol. 26, 104–108 (2016)Google Scholar
  12. 12.
    J.S. Li, B.L. Yu, H. Fischer, Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing. Appl. Spectrosc. 69(4), 496–506 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    J.A. Silver, Frequency-modulation absorption spectroscopy for trace species detection: theoretical and experimental comparison among methods. Appl. Opt. 31(6), 707–717 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    L. Dong, Y.J. Yu, C.G. Li, S. So, F.K. Tittel, Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multi-pass gas cell. Opt. Express 23(15), 19821–19830 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    H.I. Schiff, D.R. Hastie, G.I. Mackay, T. Iguchi, B.A. Ridley, Tunable diode laser systems for measuring trace gases in tropospheric air. Environ. Sci. Technol. 17(8), 352A–364A (1983)ADSGoogle Scholar
  16. 16.
    Q. X. He, C. T. Zheng, H. F. Liu, Y. D. Wang, and F. K. Tittel, A near-infrared gas sensor system based on tunable laser absorption spectroscopy and its application in CH4/C2H2 detection. Proc. SPIE 10111, 1011135-1–1011135-7 (2017)Google Scholar
  17. 17.
    B. Li, C.T. Zheng, Q.X. He, W.L. Ye, Y. Zhang, J.Q. Pan, Y.D. Wang, Development and measurement of a near-infrared CH4, detection system using 1.654 μm wavelength-modulated diode laser and open reflective gas sensing probe. Sens Actuat B Chem 225, 188–198 (2016)CrossRefGoogle Scholar
  18. 18.
    F.A. Blum, K.W. Nill, P.L. Kelley, A.R. Calawa, T.C. Harman, Tunable infrared laser spectroscopy of atmospheric water vapor. Science 177(4050), 694–695 (1972)ADSCrossRefGoogle Scholar
  19. 19.
    J.S. Li, B.L. Yu, W.X. Zhao, W.D. Chen, A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy. Appl. Spectrosc. Rev. 49(8), 666–691 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    J.S. Li, H. Deng, P.F. Li, B.L. Yu, Real-time infrared gas detection based on an adaptive Savitzky-Golay algorithm. Appl. Phys. B Lasers Opt. 120(2), 207–216 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    F. Zhang, J.X. Hang, S.B. Wang, Time-delay compensation method of FOG based on Lagrange interpolation. J. Chin. Inertial Technol. 25(5), 676–680 (2017)Google Scholar
  22. 22.
    C.T. Zheng, W.L. Ye, N.P. Sanchez, A.K. Gluszek, A.J. Hudzikowski, C.G. Li, L. Dong, R.J. Griffin, F.K. Tittel, Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers. IEEE Photon. Technol. Lett. 28(21), 2351–2354 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Muller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, The Hitran 2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    The HITRAN Database. Accessed 6 Aug 2018
  25. 25.
    R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and optical diagnostics for gases (Springer, Berlin, 2016)CrossRefGoogle Scholar
  26. 26.
    C. Claveau, A. Henry, D. Hurtmans, A. Valentin, Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2140 cm−1. J. Quant. Spectrosc. Radiat. Transfer 68(3), 273–298 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    A. Valentin, Ch. Claveau, A.D. Bykov, N.N. Lavrentieva, V.N. Saveliev, L.N. Sinitsa, The water-vapor ν2 band lineshift coefficients induced by nitrogen pressure. J. Mol. Spectrosc. 198(2), 218–229 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    D.E. Heard, Analytical techniques for atmospheric measurement (Blackwell Publishing, Oxford, 2006)CrossRefGoogle Scholar
  29. 29.
    G.C. Xiong, Adaptive Filter. Geophys. Geochem. Explor. 22(2), 147–153 (2000)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina
  2. 2.College of EngineeringShantou UniversityShantouChina
  3. 3.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA

Personalised recommendations