Applied Physics B

, 125:69 | Cite as

Atom localization in five-level atomic system driven by an additional incoherent pump

  • Fei Song
  • Zhiping WangEmail author
  • Ruoyu Juan
  • Benli Yu


We propose a new scheme for two-dimensional (2D) and three-dimensional (3D) atom localization via spatial quantum interference in a five-level atomic system driven by an additional incoherent pump. Because of the position-dependent atom–field interaction, the position information of the atom can be obtained by the measurement of the probe absorption. We find that the 3D atom localization is obtained with high precision by adjusting the incoherent pump. In particular, we show that adjusting the incoherent pump can lead to a redistribution of the atoms and a significant change in the visibility of the interference pattern. As a result, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength.



This work is supported by the National Natural Science Foundation of China (Grant No. 11674002) and the State Scholarship Fund of China Scholarship Council (CSC) as a visiting scholar at University of Nottingham (File No. 201806505020).


  1. 1.
    K.S. Johnson, J.H. Thywissen, N.H. Dekker, K.K. Berggren, A.P. Chu, R. Younkin, M. Prentiss, Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    K.T. Kapale, S. Qamar, M.S. Zubairy, Spectroscopic measurement of an atomic wave function. Phys. Rev. A 67, 023805 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    S. Qamar, S.Y. Zhu, M.S. Zubairy, Atom localization via resonance fluorescence. Phys. Rev. A 61(6), 063806 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    F. Ghafoor, S. Qamar, M.S. Zubairy, Atom localization via phase and amplitude control of the driving field. Phys. Rev. A 65(4), 043819 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    J. Xu, X.M. Hu, Sub-half-wavelength atom localization via bichromatic phase control of spontaneous emission. Phys. Lett. A 366(3), 276–281 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    C. Ding, J. Li, Z. Zhan, X. Yang, Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system. Phys. Rev. A 83(6), 922–925 (2011)CrossRefGoogle Scholar
  7. 7.
    R.G. Wan, J. Kou, L. Jiang, Y. Jiang, J.Y. Gao, Two-dimensional atom localization via controlled spontaneous emission from a driven tripod system. J. Opt. Soc. Am. B 28(1), 10–17 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    M. Sahrai, H. Tajalli, K.T. Kapale, M.S. Zubairy, Subwavelength atom localization via amplitude and phase control of the absorption spectrum. Phys. Rev. A 72(1), 013820 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    K.T. Kapale, M.S. Zubairy, Subwavelength atom localization via amplitude and phase control of the absorption spectrum II. Phys. Rev. A 73(2), 023813 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    S. Qamar, A. Mehmood, S. Qamar, Subwavelength atom localization via coherent manipulation of the Raman gain process. Phys. Rev. A 79(3), 033848 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    J. Li, R. Yu, M. Liu, C. Ding, X. Yang, Efficient two-dimensional atom localization via phase sensitive absorption spectrum in a radio-frequency-driven four-level atomic system. Phys. Lett. A 375(45), 3978–3985 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    C.L. Ding, J.H. Li, X.X. Yang, D. Zhang, H. Xiong, Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system. Phys. Rev. A 84, 043840 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    R.G. Wan, T.Y. Zhang, J. Kou, Two-dimensional sub-half-wavelength atom localization via phase control of absorption and gain. Phys. Rev. A 87, 043816 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Rahmatullah, S. Qamar, Two-dimensional atom localization via probe-absorption spectrum. Phys. Rev. A 88, 013846 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    E. Paspalakis, P.L. Knight, Localizing an atom via quantum interference. Phys. Rev. A 63(6), 065802 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    V. Ivanov, Y. Rozhdestvensky, Two-dimensional atom localization in a four-level tripod system in laser fields. Phys. Rev. A 81, 033809 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    C.P. Liu, S.Q. Gong, D.C. Cheng, X.J. Fan, Z.Z. Xu, Atom localization via interference of dark resonances. Phys. Rev. A 73(2), 025801 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    R.G. Wan, J. Kou, L. Jiang, Y. Jiang, J.Y. Gao, Two-dimensional atom localization via interacting double-dark resonances. J. Opt. Soc. Am. B 28, 622 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    N.A. Proite, Z.J. Simmons, D.D. Yavuz, Observation of atomic localization using electromagnetically induced transparency. Phys. Rev. A 83, 041803 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    T. Shui, Z.P. Wang, B.L. Yu, Efficient two-dimensional atom localization via spontaneously generated coherence and incoherent pump. J. Opt. Soc. Am. B 32, 210 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    V.S. Ivanov, Y.V. Rozhdestvensky, K.-A. Suominen, Three-dimensional atom localization by laser fields in a four-level tripod system. Phys. Rev. A 90(6), 063802 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    H.R. Hamedi, G. Juzeliunas, Phase-sensitive atom localization for closed-loop quantum systems. Phys. Rev. A 94(1), 013842 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Z. Zhu, W.-X. Yang, X.-T. Xie, S. Liu, S. Liu, R.-K. Lee, Three-dimensional atom localization from spatial interference in a double two-level atomic system. Phys. Rev. A 94(1), 013826 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Wang, J. Chen, B. Yu, High-dimensional atom localization via spontaneously generated coherence in a microwave-driven atomic system. Opt. Express 25, 3358 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    C. O’Brien, O. Kocharovskaya, Optically controllable photonic structures with zero absorption. Phys. Rev. Lett. 107, 137401 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Wu, X.X. Yang, Highly efficient four-wave mixing in double-lambda system in ultraslow propagation regime. Phys. Rev. A. 70, 053818 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Wu, L. Deng, Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett. 93, 143904 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Wu, X.X. Yang, Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A. 71, 053806 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    L.D. Zhang, T.N. Dey, J. Evers, Control of beam propagation in optically written waveguides beyond the paraxial approximation. Phys. Rev. A 87, 043842 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    H. Li, V.A. Sautenkov, M.M. Kash, A.V. Sokolov, G.R. Welch, Y.V. Rostovtsev, M.S. Zubairy, M.O. Scully, Optical imaging beyond the diffraction limit via dark states. Phys. Rev. A. 78, 013803 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of EducationAnhui UniversityHefeiChina

Personalised recommendations