Applied Physics B

, 125:63 | Cite as

Optical measurements of temperature fields in sooting flames: influence of soot self-absorption

  • Qianlong WangEmail author
  • Guillaume Legros
  • Céline Morin
  • Mingfa Yao
  • Weiwei Cai
  • Liqiao Jiang
Rapid Communication


Regular pyrometry techniques have been extensively used to infer the temperature field in sooting flames from soot luminosity. However, correction for soot self-absorption along the line-of-sight needs to be considered. The original contribution of the present paper is to assess both numerical and experimental uncertainties that can be attributed to the soot self-absorption effect on the soot temperature field measured by the two-color Modulated Absorption/Emission (2C-MAE) technique. Unlike for regular pyrometry techniques, the design of the 2C-MAE technique actually enables the direct measurement of the local spectral absorption coefficient field. The proportion of flame emission trapping caused by the soot along the line-of-sight is first simulated for different levels of soot loading ranges. The retrieved temperature error when self-absorption is neglected can then be quantified as a function of the level of soot loading and the detection spectral ranges of the technique. As a result, it is found that the proportion of the flame emission attenuation due to self-absorption is directly proportional to the soot volume fraction \(f_\mathrm{v}\) and hardly depends on the temperature field to be retrieved. These trends are emphasized as the lower spectral range of detection is shifted towards the smaller wavelength. In addition, a linear correlation between the absolute temperature error and the peak \(f_\mathrm{v}\) in the flame can be extracted and confirmed by experimental results. Eventually, it is also found that selecting detection spectral ranges centered at 645 nm and 785 nm offer the minimum temperature deviation when soot self-absorption is neglected for any conditions of soot loading level within the three studied spectral combinations. This finding is especially relevant for the identification of the optimal operating conditions required by regular 2C-pyrometry for the sooting flames considered.



This work was supported by the Natural National Science Foundation (NSFC) (51706140). Thanks for Mr. Jérôme Bonnety for his experimental assisting.


  1. 1.
    M. Frenklach, H. Wang, Detailed modeling of soot particle nucleation and growth. Proc. Combust. Inst. 23, 1559–1566 (1991)CrossRefGoogle Scholar
  2. 2.
    I.M. Kennedy, C. Yam, D.C. Rapp, R.J. Santoro, Modeling and measurements of soot and species in a laminar diffusion flame. Combust. Flame 107, 368–382 (1996)CrossRefGoogle Scholar
  3. 3.
    G. Blanquart, H. Pitsch, Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model. Combust. Flame 156, 1614–1626 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Khosousi, F. Liu, S.B. Dworkin, N.A. Eaves, M.J. Thomson, Experimental and numerical study of soot formation in laminar coflow diffusion flames of gasoline/ethanol blends. Combust. Flame 162, 3925–3933 (2015)CrossRefGoogle Scholar
  5. 5.
    C. Eberle, P. Gerlinger, M. Aigner, A sectional PAH model with reversible PAH chemistry for CFD soot simulations. Combust. Flame 179, 63–73 (2017)CrossRefGoogle Scholar
  6. 6.
    F. Liu, H. Guo, G.J. Smallwood, Ö.L. Gülder, Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. J. Quant. Spectrosc. Radiat. Transf. 73, 409–421 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    P. Chatterjee, J. L. de Ris, Y. Wang, S. B. Dorofeev, A model for soot radiation in buoyant diffusion flame, Proc. Combust. Inst. 2, 2665-2671 (2011)CrossRefGoogle Scholar
  8. 8.
    R.J. Santoro, T.T. Yeh, J.J. Horvath, H.G. Semerjian, The transport and growth of soot particles in laminar diffusion flames. Combust. Sci. Technol. 53, 89–115 (1987)CrossRefGoogle Scholar
  9. 9.
    P.B. Kuhn, B. Ma, B.C. Connelly, M.D. Smooke, M.B. Long, Soot and Thin-filament Pyrometry Using a Color Digital Camera. Proc. Combust. Inst. 33, 743–750 (2011)CrossRefGoogle Scholar
  10. 10.
    Q. Wang, G. Legros, J. Bonnety, C. Morin, Experimental characterization of the different nitrogen dilution effects on soot formation in ethylene diffusion flames. Proc. Combust. Inst. 36, 3227–3235 (2017)CrossRefGoogle Scholar
  11. 11.
    Q. Wang, G. Legros, J. Bonnety, C. Morin, A. Matynia, J.L. Consalvi, F.S. Liu, Experimental assessment of the sudden-reversal of the oxygen dilution effect on soot production in coflow ethylene flames. Combust. Flame 183, 242–252 (2017)CrossRefGoogle Scholar
  12. 12.
    T. Blacha, M.D. Domenico, P. Gerlinger, M. Aigner, Soot predictions in premixed and non-premixed laminar flames using a sectional approach for PAHs and soot. Combust. Flame 159, 181–193 (2012)CrossRefGoogle Scholar
  13. 13.
    S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Peak soot temperature in laser-induced incandescence measurements. Appl. Phys. B 83, 397–402 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    M. Charwath, R. Suntz, H. Bockhorn, Influence of the temporal response of the detection system on time-resolved laser-induced incandescence signal evolutions. Appl. Phys. B 83, 435–442 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame. Appl. Phys. B 96, 657–669 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII). Combust. Flame 120, 439–450 (2000)CrossRefGoogle Scholar
  17. 17.
    F. Goulay, P.E. Schrader, H.A. Michelsen, Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence. Appl. Phys. B 100, 655–663 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, Determination of the Soot Volume Fraction in an Ethylene Diffusion Flame by Multiwavelength Analysis of Soot Radiation. Combust. Flame 115, 253–261 (1998)CrossRefGoogle Scholar
  19. 19.
    D.R. Snelling, K.A. Thomson, G.J. Smallwood, L.Ö. Gülder, E.J. Weckman, R.A. Fraser, Spectrally resolved measurement of flame radiation to determine soot temperature and concentration. AIAA J. 40, 1789–1795 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    I. Ayranci, R. Vaillon, N. Selcuk, F. André, D. Escudié, Determination of Soot Temperature, Volume Fraction and Refractive Index From Flame Emission Spectrometry. J. Quant. Spectr. Radiat. Transfer 104, 266–276 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    R.J. Hall, P.A. Bonczyk, Sooting flame thermometry using emission/absorption tomography. Appl. Opt. 29, 4590–4598 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    T.P. Jenkins, R.K. Hanson, Soot pyrometry using modulated absorption/emission. Combust. Flame 126, 1669–1679 (2001)CrossRefGoogle Scholar
  23. 23.
    G. Legros, Q. Wang, J. Bonnety, M. Kashif, C. Morin, J.L. Consalvi, F.S. Liu, Simultaneous soot temperature and volume fraction measurements in axis-symmetric flames by a two-dimensional modulated absorption/emission technique. Combust. Flame 162, 2705–2719 (2015)CrossRefGoogle Scholar
  24. 24.
    H.A. Michelsen, Probing soot formation, chemical and physical evolution, and oxidation: A review of in situ diagnostic techniques and needs. Proc. Combust. Inst. 36, 717–735 (2017)CrossRefGoogle Scholar
  25. 25.
    J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle, K.F. Ren, Examination of wavelength dependent soot optical properties of diesel and diesel/rapeseed methyl ester mixture by extinction spectra analysis and LII measurements. Appl. Phys. B 104, 253–271 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    M.P. Freeman, S. Katz, Determination of the Radial Distribution of Brightness in a Cylindrical Luminous Medium with Self-Absorption. J. Opt. Soc. Am. 50, 826–830 (1960)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    H.A. Michelsen, Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51, 2–48 (2015)CrossRefGoogle Scholar
  28. 28.
    M.Y. Choi, K.A. Jensen, Calibration and correction o f laser induced incandescence for soot volume fraction measurements. Combust. Flame 112, 485–49 (1998)CrossRefGoogle Scholar
  29. 29.
    F. Liu, K.A. Thomson, G.J. Smallwood, Numerical investigation of the effect of signal trapping on soot measurements using LII in laminar coflow diffusion flames. Appl. Phys. B 96, 671–682 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    K. J. Daun, K. A. Thomson, F. Liu, Investigation of Thermal Accommodation Coefficients in Time-Resolved Laser-Induced Incandescence, J. Heat Transfer 130, 112701-1/112701-10 (2008)CrossRefGoogle Scholar
  31. 31.
    B. Franzelli, M. Roussillo, P. Scouflaire, J. Bonnety, R. Jalain, T. Dormieux, S. Candel, G. Legros, Multi-diagnostic soot measurements in a laminar diffusion flame to assess the ISF database consistency. Proc. Combust. Inst. 37, (2018). CrossRefGoogle Scholar
  32. 32.
    F. Liu, K.A. Thomson, G.J. Smallwood, Soot temperature and volume fraction retrieval from spectrally resolved flame emission measurement in laminar axisymmetric coflow diffusion flames: Effect of self-absorption. Combust. Flame 160, 1693–1705 (2013)CrossRefGoogle Scholar
  33. 33.
    N.J. Kempema, M.B. Long, Effect of soot self-absorption on color-ratio pyrometry in laminar coflow diffusion flames. Opt. Lett. 43, 1103–1106 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    K.J. Daun, K.A. Thomson, F. Liu, G.J. Smallwood, Deconvolution of axisymmetric flame properties using Tikhonov regularization. Appl. Opt. 45, 4638–4646 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983)Google Scholar
  36. 36.
    F. Cignoli, S.D. Luliis, Two dimensional two wavelength emission technique for soot diagnostics. Appl. Opt. 40, 5370–5378 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    H. Chang, T.T. Charalampopoulos, Determination of the Wavelength Dependence of Refractive indices of Flame Soot. Proc. Roy. Soc. Lond. A 430, 577–591 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Soot particle measurements in diffusion flames. Combust. Flame 51, 202–218 (1983)CrossRefGoogle Scholar
  39. 39.
    H.A. Michelsen, P.E. Schrader, F. Goulay, Wavelength and temperature dependences of the absorption and scattering cross sections of soot. Carbon 8, 2175–2191 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of EnginesTianjin UniversityTianjinChina
  2. 2.Centre National de la Recherche ScientifiqueSorbonne UniversitéParisFrance
  3. 3.LAMIH CNRS UMR 8201UVHCValenciennesFrance
  4. 4.School of Mechanical EngineeringShanghai Jiaotong UniversityShanghaiChina
  5. 5.Chinese Academy of SciencesGuangzhou Institute of Energy ConversionGuangzhouChina

Personalised recommendations