Advertisement

Applied Physics B

, 125:58 | Cite as

Growth and characterisation of organic nonlinear optical single-crystal 4-nitrophenol grown by vertical Bridgman technique

  • K. Arunkumar
  • S. KalainathanEmail author
Article
  • 44 Downloads

Abstract

An organic nonlinear optical single-crystal 4-nitrophenol was successfully grown by vertical Bridgman technique using single-wall ampule in size of 38 × 15 mm2. The lattice parameters and crystallinity of the title crystal were confirmed through the single crystal and powder X-ray diffraction studies, respectively. The UV–Vis–NIR spectral analysis addressed that the title crystal has a lower optical cut-off wavelength at 405 nm and exhibits transparency of 82% in entire visible and near-IR regions with a wide band gap of 2.84 eV. The hardness, Meyer’s index, stiffness constant, yield strength, fracture toughness, and brittle index of the grown specimen were systematically investigated using a Vickers microhardness tester. The low value of dielectric constant and dielectric loss for the present crystal enrolls that it is well suitable for microelectronic industry. The laser-induced damage threshold value of the grown specimen is found to be 17.66 GW/cm2. The Z-scan measurement was employed to calculate the third-order nonlinear optical parameters of the title crystal.

Notes

Acknowledgements

The authors thank the management of VIT, Vellore, for providing excellent research facilities. The authors are very much thankful to SAIF, IIT Madras, for providing single crystal XRD.

References

  1. 1.
    G. Anandha Babu, P. Ramasamy. J. Cryst. Growth 312, 2423–2426 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    T. Cassano, R. Tommasi, F. Badubri, A. Cardone, G.M. Farinola, F. Naso, Opt. Lett. 27, 2176–2178 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    P. Srinivasan, Y. Vidyalakshmi, R. Gopalakrishnan, Cryst. Growth Des. 8, 2329–2334 (2008)CrossRefGoogle Scholar
  4. 4.
    R. Gandhimathi, R. Dhanasekaran, Cryst. Res. Technol. 47, 385–390 (2012)CrossRefGoogle Scholar
  5. 5.
    N. Vijayan, N. Balamurugan, R. Ramesh, Babu, R. GopalakrishnanGoogle Scholar
  6. 6.
    P. Ramasamy, W.T.A. Harrison, J. Cryst. Growth 267, 218–222 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    T. Arivazhagan, N.P. Rajesh, Opt. Las. Technol. 64, 156–161 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    P. Coppens, Acta Cryst. 18, 62–67 (1965)CrossRefGoogle Scholar
  9. 9.
    S.G. Amridha, S. Kalainathan, J. Phys. Chem. Solids 72, 961 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    K. Senthil, S. Kalainathan, A. Ruban Kumar, P. G. Aravindan RSC Adv. 4, 56112–56127 (2014)CrossRefGoogle Scholar
  11. 11.
    K. Senthil, S. Kalainathan, A. Ruban Kumar, Spect. Acta Part A: Mole.Bio. Spect 124, 603–610 (2014)CrossRefGoogle Scholar
  12. 12.
    E.D. D’silva, G. Krishna Podagatlapalli, S. Venugopal Rao, S.M. Dharmaprakash Opt. Las. Technol. 44, 1689–1697 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    K. Gayathri, P. Krishnan, P.R. Rajkumar, G. Anbalagan, Bull. Mater. Sci. 37, 1589–1595 (2014)CrossRefGoogle Scholar
  14. 14.
    Suresh, Sagadevan, Shanmuga Sundaram Anandan. Inte. J. Mater. Eng. 4(2), 70–74 (2014)Google Scholar
  15. 15.
    Hamid Reza Safaei, Mohammad Reza Safaei and Vahid Rahmanian, Open Electrochem. J. 4, 1–8 (2012)Google Scholar
  16. 16.
    E.M. Onistch, Mikroscopia. 2, 131–151 (1947)Google Scholar
  17. 17.
    K. Nivetha, S. Kalainathan, M. Yamada, Y. Kondo, F. Hamada. Mat. Chem. Phys. 188, 131–142 (2017)CrossRefGoogle Scholar
  18. 18.
    D. Shanthi, P. Selvarajan, R. Jothi Mani, Optik. 125, 2531–2537 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    S. Anandhi, T.S. Shyju, R. Gopalakrishnan, Optik. 124(22), 5553–5560 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    C. Ramki, R. Ezhil Vizhi Mater. Lett. 215, 165–168 (2018)CrossRefGoogle Scholar
  21. 21.
    K. Jagannathan, S. Kalainathan, T. Gnanasekaran, Mater. Lett. 61, 4485–4488 (2007)CrossRefGoogle Scholar
  22. 22.
    B.K. Neelam Singh, M.K. Singh, Gupta, Binay Kumar. Opt. Commun. 285, 659–664 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    N. Pattanaboonmeea, P. Ramasamy, P. Manyum. Proc. Eng. 32, 1019–1025 (2012)Google Scholar
  24. 24.
    K. Senthil, S. Kalainatha, A. Ruban Kumar, Spect. Acta Part A: Mole.Bio. Spect. 125, 335–344 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    N. Vijayan, G. Bhagavannarayana, G.C. Budakoti, B. Kumar, V. Upadhyaya, Subhasis Das, Mater. Lett. 62, 1252–1254 (2008)CrossRefGoogle Scholar
  26. 26.
    N. Sowmya, S. Swarna, S. Sampathkrishnan, M. Sudhahar, R. Krishna Kumar, Mohan Kumar. Optik 127, 3024–3029 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Yadav, N. Sinha, N. Tyagi, B. Kumar, Cryst. Growth Des. 15(10)), 4908–4917 (2015)CrossRefGoogle Scholar
  28. 28.
    T. Suthan, P.V. Dhanaraj, N.P. Rajesh, C.K. Mahadevan, G. Bhagavannarayana, Cryst. Eng. Commun. 13, 4018–4024 (2011)CrossRefGoogle Scholar
  29. 29.
    S.K. Sharma, S. Verma, Y. Singh, K.S. Bartwal, M.K. Tiwari, G.S. LodhaGoogle Scholar
  30. 30.
    G. Bhagavannarayana, Opt. Mater. 46, 329–338 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    P. Karuppasamya, T. Kamalesh, K. Anithab, S. Abdul Kalam, Muthu Senthil Pandian, P. Ramasamy, S. Vermad, S. Venugopal Rao. Opt. Mater. 84, 475–489 (2018)CrossRefGoogle Scholar
  32. 32.
    A. Saranraj, J. Thirupathy, S. Sahaya Jude Dhas, M. Jose, G. Vinitha, S. A. Martin Britto Dhas. Appl. Physics B. 124, 97 (2018)CrossRefGoogle Scholar
  33. 33.
    S. Priyadharshini, Kalainathan. Opt. Mater. 78, 35–43 (2018)CrossRefGoogle Scholar
  34. 34.
    K. Gayathri, J. Mohana, J. Srividya, G. Bhagavannarayana, G. Anbalagan, Optik 127(3), 1176–1183 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    K. Boopathi, P. Rajesh, P. Ramasamy, Prapun Manyum. Opt. Mater. 35(5)), 954–961 (2013)CrossRefGoogle Scholar
  36. 36.
    M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955–957 (1989)ADSCrossRefGoogle Scholar
  37. 37.
    M. Sheik-bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van stryland, J. Quantum Electron. 26, 4 (1990)CrossRefGoogle Scholar
  38. 38.
    S. Nivetha Karuppanan, Kalainathan, J. Phys. Chem. 2018Google Scholar
  39. 39.
    R. Jothi Mani, P. Selvaraja, H. Alex Devadoss, D. Shanthi, Optik 126, 213–218 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    T.C. Sabari Girisun, S. Dhanuskodi, G. Vinitha, Mater. J. Chem. Phys. 129, 9–14 (2011)CrossRefGoogle Scholar
  41. 41.
    K. Naseema, M. Shyma, K.B. Manjunatha, A. Muralidharan, G. UmeshGoogle Scholar
  42. 42.
    Vijayalakshmi Rao, Opt. Las. Tech. 43, 1286–1291 (2011)CrossRefGoogle Scholar
  43. 43.
    X.B. Sun, X.Q. Wang, Q. Ren, G.H. Zang, H.L. Yang, L. Feng, Mat. Res. Bull. 41, 177–182 (2006)CrossRefGoogle Scholar
  44. 44.
    T.C. Sabari Girisun, S. Dhanuskodi, G. Vinitha, Mat. Chem. Phys. 129, 9–14 (2011)CrossRefGoogle Scholar
  45. 45.
    M. Mahadevan, P.K. Sankar, G. Vinitha, M. Arivanandhan, K. Ramachandran, P. Anandan, Opt. Las. Tech. 92, 168–172 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    A. Vijayalakshmi, B. Vidyavathy, G. Vinitha, J. Cryst. Growth 448, 82–88 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    K. Arunkumar, S. Kalainathan Opt. Las. Tech. 89, 143–150 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Crystal GrowthVellore Institute of TechnologyVelloreIndia
  2. 2.CCG VIT UniversityVelloreIndia

Personalised recommendations