Applied Physics B

, 125:53 | Cite as

Spectral characteristic based on sectorial-ring cavity resonator coupled to plasmonic waveguide

  • Mingfei Zheng
  • Mingzhuo Zhao
  • Cuixiu Xiong
  • Hui Xu
  • Baihui Zhang
  • Wenke Xie
  • Hongjian LiEmail author


We propose and investigate left- or right-handed sectorial-ring cavity resonator coupled to metal-insulator-metal plasmonic waveguide. This resonator has the advantages of realizing simple, compact, asymmetrical, multiple, and controllable or tunable cavity, which is a novel plasmonic nanofilter or nanosensor. According to the two-dimensional simulation, the results indicate that the left- or right-handed resonator is the identical effect, and two resonance modes appear in the transmission spectrum of the novel system. When the refractive index (n) of the dielectric, the width (ws) and center arc length (lC) (namely central angle (θ), outer radius (R) and inner radius (r)) of the cavity, and the gap distance (g) between cavity and waveguide are fixed and unfixed, the transmission spectrum is highly controlled with various θ, R and r, and tuned by adjusting the n, (R − r), θ, (R + r) or g, respectively. The coupled mode theory is employed to elucidate the spectral characteristic, which is in good agreement with the numerical simulation. It provides a promising way for realization of controllable or tunable transmission spectrum and for optimization of prospective structure size, and has potential application in nanoscale optical devices and integrated optics devices. It demonstrates a practical approach to design optical devices, which will satisfy different fabricating demands in future.



This work was supported by the National Natural Science Foundation of China under Grant no. 61275174 and the Postgraduate Technology Innovation Project of Central South University under Grant no. 2017zzts062.


  1. 1.
    W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, T.W. Ebbesen, Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett. 92, 107401 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    D.F.P. Pile, T. Ogawa, D.K. Gramotnev, Y. Matsuzaki, K.C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, M. Fukui, Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87, 261114 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    G. Veronis, S.H. Fan, Modes of subwavelength plasmonic slot waveguides. J. Lightwave Technol. 25, 2511–2521 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    W. Cai, W. Shin, S. Fan, M.L. Brongersma, Elements for plasmonic nanocircuits with three-dimensional slot waveguides. Adv. Mater. 22, 5120–5124 (2010)CrossRefGoogle Scholar
  7. 7.
    Z. He, H. Li, S. Zhan, B. Li, Z. Chen, H. Xu, π-Network transmission line model for plasmonic waveguides with cavity structures. Plasmonics 10, 1581–1585 (2015)CrossRefGoogle Scholar
  8. 8.
    Z. Chen, H. Li, S. Zhan, B. Li, Z. He, H. Xu, M. Zheng, Tunable high quality factor in two multimode plasmonic stubs waveguide. Sci. Rep. 6, 24446 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    K. Tanaka, M. Tanaka, T. Sugiyama, Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Opt. Express 13, 256–266 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    L. Liu, Z. Han, S. He, Novel surface plasmon waveguide for high integration. Opt. Express 13, 6645–6650 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    B. Li, H. Li, L. Zeng, S. Zhan, Z. He, Z. Chen, H. Xu, Theoretical analysis and applications in inverse T-shape structure. J. Opt. Soc. Am. A 33, 811–816 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Z. He, H. Li, B. Li, Z. Chen, H. Xu, M. Zheng, Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub. Opt. Lett. 41, 5206–5209 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Chen, H. Li, Z. He, H. Xu, M. Zheng, M. Zhao, Multiple plasmon-induced transparency effects in a multimode-cavity-coupled metal-dielectric-metal waveguide. Appl. Phys. Express 10, 092201 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    M. Zheng, H. Li, H. Xu, Z. He, Z. Chen, M. Zhao, Filtering property based on ultra-wide stopband in double sector/sectorial-ring stub resonator coupled to plasmonic waveguide. IEEE Photon. J. 9, 2201308 (2017)Google Scholar
  15. 15.
    M. Zhao, H. Li, Z. He, Z. Chen, H. Xu, M. Zheng, Novel oscillator model with damping factor for plasmon induced transparency in waveguide systems. Sci. Rep. 7, 10635 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Q. Zhang, X. Huang, X. Lin, J. Tao, X. Jin, A subwavelength coupler-type MIM optical filter. Opt. Express 17, 7549–7554 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    B. Yun, G. Hu, Y. Cui, Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity. Plasmonics 8, 267–275 (2013)CrossRefGoogle Scholar
  18. 18.
    H. Lu, X. Liu, Y. Gong, L. Wang, D. Mao, Multi-channel plasmonic waveguide filters with disk-shaped nanocavities. Opt. Commun. 284, 2613–2616 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Han, Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides. Photonics Nanostruct. 8, 172–176 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    A. Hosseini, Y. Massoud, Nanoscale surface plasmon based resonator using rectangular geometry. Appl. Phys. Lett. 90, 181102 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    X. Peng, H. Li, C. Wu, G. Cao, Z. Liu, Research on transmission characteristics of aperture-coupled square-ring resonator based filter. Opt. Commun. 294, 368–371 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    T. Holmgaard, Z. Chen, S.I. Bozhevolnyi, L. Markey, A. Dereux, Dielectric-loaded plasmonic waveguide-ring resonators. Opt. Express 17, 2968–2975 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    A.W. Clark, A.K. Sheridan, A. Glidle, D.R.S. Cumming, J.M. Cooper, Tuneable visible resonances in crescent shaped nano-split-ring resonators. Appl. Phys. Lett. 91, 093109 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic, Boston, 1985)Google Scholar
  25. 25.
    H.A. Haus, Waves and Fields in Optoelectronics. (Prentice-Hall, Upper Saddle River, 1984)Google Scholar
  26. 26.
    S. Zhan, H. Li, G. Cao, Z. He, B. Li, H. Xu, Theoretical analysis and applications on nano-block loaded rectangular ring. J. Opt. Soc. Am. A 31, 2263–2267 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Z.F. Yu, G. Veronis, S.H. Fan, M.L. Brongersma, Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl. Phys. Lett. 92, 041117 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    M. Zheng, H. Li, H. Xu, M. Zhao, C. Xiong, B. Zhang, Tunable and selective transmission based on multiple resonance modes in side-coupled sectorial-ring cavity waveguide. Plasmonics.
  29. 29.
    M. Zheng, H. Li, Z. Chen, H. Xu, M. Zhao, C. Xiong, Transmission performance based on plasmonic waveguide coupled with sectorial-ring stub resonator. IEEE Photonics Technol. Lett. 30, 415–418 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    S.I. Bozhevolnyi, J. Jung, Scaling for gap plasmon based waveguides. Opt. Express 16, 2676–2684 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    S. Zhan, H. Li, G. Cao, Z. He, B. Li, H. Yang, Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J. Phys. D 47, 205101 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    M. Zheng, H. Li, Z. Chen, Z. He, H. Xu, M. Zhao, Compact and multiple plasmonic nanofilter based on ultra-broad stopband in partitioned semicircle or semiring stub waveguide. Opt. Commun. 402, 47–51 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Fan, N. Shen, T. Koschny, C.M. Soukoulis, Tunable terahertz meta-surface with graphene cut-wires. ACS Photonics 2, 151–156 (2015)CrossRefGoogle Scholar
  34. 34.
    Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, C.M. Soukoulis, Electrically tunable Goos-Hanchen effect with graphene in the terahertz regime. Adv. Opt. Mater. 4, 1824–1828 (2016)CrossRefGoogle Scholar
  35. 35.
    Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, C.M. Soukoulis, Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resognances. ACS Photonics 5, 1612–1618 (2018)CrossRefGoogle Scholar
  36. 36.
    W. Zhu, R. Yang, Y. Fan, Q. Fu, H. Wu, P. Zhang, N. Shen, F. Zhang, Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials. Nanoscale 10, 12054–12061 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and ElectronicsCentral South UniversityChangshaChina
  2. 2.Institute of Modern Optics and State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, College of PhysicsPeking UniversityBeijingChina

Personalised recommendations