Applied Physics B

, 125:51 | Cite as

Spin Hall effect of Airy beam in inhomogeneous medium

  • Hehe LiEmail author
  • Miaomiao Tang
  • Jingge Wang
  • Jingxiao Cao
  • Xinzhong Li


The spin Hall effect of Airy beam in the quadratic-index inhomogeneous medium is investigated based on the matrix optics method. It is known that Airy beam possesses an asymmetrical field distribution and some intriguing propagation properties, such as it is a non-diffracting, self-healing, and self-accelerating beam. We find that the spin Hall effect of an Airy beam in the quadratic-index inhomogeneous medium displays some distinctive polarization-dependent phenomena which are completely different from the traditional spin Hall effect of light. First, there is a polarization-dependent rotation of Airy beam induced by the spin–orbit coupling; second, there is a polarization-dependent phase front deformation of Airy beam induced by the spin–orbit coupling, besides the polarization-dependent shift of the entire phase front of the beam; third, transverse deflection of the center of gravity of the beam in the phase transition locations is determined not just by the polarization of the beam, but also by the position. These results mean that the symmetry of the field distribution of the beam also plays an important role in the spin Hall effect of light.



This work was support in part by the National Natural Science Foundation of China (Nos. 11504091, 11604082, 11704098, 61775052).


  1. 1.
    L. Allen, S.M. Barnett, M.J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003)CrossRefGoogle Scholar
  2. 2.
    V.S. Liberman, B. Ya Zel’dovich, Phys. Rev. A 46, 5199–5207 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    K.Y. Bliokh, Y.P. Bliokh, Phys. Rev. E 70, 026605 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    K.Y. Bliokh, A. Niv, V. Kleiner, E. Hasman, Nat. Photonics 2, 748–753 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    K.Y. Bliokh, J. Opt. A Pure Appl. Opt. 11, 094009 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    K.Y. Bliokh, A.S. Desyatnikov, Phys. Rev. A 79, 011807 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    H. Li, P. Ji, Opt. Commun. 285, 5113–5117 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    K.Y. Bliokh, F.J. Rodríguez-Fortuǹo, F. Nori, A.V. Zayats, Nat. Photonics 9, 796–808 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    M. Onoda, S. Murakami, N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    O. Hosten, P. Kwait, Science 319, 787 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Qin, Y. Li, H. He, Q. Gong, Opt. Lett. 34, 2551–2553 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, D. Fan, Phys. Rev. A 80, 043810 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    J. Ren, B. Wang, M. Pan, Y. Xiao, Q. Gong, Y. Li, Phys. Rev. A 92, 013839 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    B. Cao, D. Wei, P. Zhang, H. Gao, F. Li, Chin. Opt. Lett. 15, 022401 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    X. Ling, X. Zhou, K. Huang, Y. Liu, C. Qiu, H. Luo, S. Wen, Rep. Prog. Phys. 80, 066401 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, Y. Luo, Z. Chen, Opt. Express 25, 5196–5205 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    J. Li, T. Tang, L. Luo, N. Li, P. Zhang, Opt. Express 25, 19117–19128 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, S. Wen, Photon. Res. 6, 511–516 (2018)CrossRefGoogle Scholar
  19. 19.
    T. Tang, C. Li, L. Luo, Sci. Rep. 6, 30762 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    O. Takayama, J. Sukham, R. Malureanu, A. Lavrinenko, G. Puentes, Opt. Lett. 43, 4602 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    O. Takayama, G. Puentes, Opt. Lett. 43, 1343 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Liu, Y. Ke, H. Luo, S. Wen, Nanophotonics 6, 51 (2017)CrossRefGoogle Scholar
  23. 23.
    X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. Hang, C. Wu, H. Li, S. Chen, L. Zhou, L. Chen, Laser Photonics Rev. 2018, 1800081 (2018)Google Scholar
  24. 24.
    K.Y. Bliokh, C.T. Samlan, C. Prajapati, G. Puentes, N.K. Viswanathan, F. Nori, Optica 3, 1039 (2016)CrossRefGoogle Scholar
  25. 25.
    G.A. Siviloglou, D.N. Christodoulides, Opt. Lett. 32, 979–981 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    R. Chen, C. Yin, X. Chu, H. Wang, Phys. Rev. A 82, 043832 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    R. Bekenstein, M. Segev, Opt. Express 19, 23706–23715 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, Opt. Express 22, (2014) 7160-7171Google Scholar
  30. 30.
    C. Ruiz-Jiménez, K.Z. Nóbrega, M.A. Porras, Opt. Express 23, 8918–8928 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    F. Zhuang, X.Y. Du, Y.Q. Ye, D.M. Zhao, Opt. Lett. 37, 1871–1873 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    J.Y. Huang, Z.J. Liang, F. Deng, W.H. Yu, R.H. Zhao, B. Chen, X.B. Yang, D.M. Deng, J. Opt. Soc. Am. A 32, 2104–2109 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    J. Zhang, Z. Pang, L. Feng, T. Zhong, L. Wang, D. Deng, Chin. Opt. Lett. 15, 060501 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    G.Q. Zhou, R.P. Chen, X.X. Chu, Opt. Express 20, 2196–2205 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    J. Xie, J. Zhang, X. Zheng, J. Ye, D. Deng, Opt. Express 26, 11309–11320 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    I. Kaminer, J. Nemirovsky, K.G. Makris, M. Segev, Opt. Express 21, 8886–8896 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    S. Chávez-Cerda, U. Ruiz, V. Arrizón, H.M. Moya-Cessa, Opt. Express 19, 16448–16454 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    N.K. Efremidis, Opt. Lett. 36, 3006–3008 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Z.Y. Ye, S. Liu, C. Lou, P. Zhang, Y. Hu, D.H. Song, J.L. Zhao, Z.G. Chen, Opt. Lett. 36, 3230–3232 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Zhang, M.R. Belić, L. Zhang, W. Zhong, D. Zhu, R. Wang, Y. Zhang, Opt. Express 23, 10476–10480 (2015)Google Scholar
  41. 41.
    J. Broky, G.A. Siviloglou, A. Dogariu, D.N. Christodoulides, Opt. Express 16, 12880–12891 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    X. Chu, G. Zhou, R. Chen, Phys. Rev. A 85, 013815 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    S.A. Collins, J. Opt. Soc. Am. 60, 1168 (1970)ADSCrossRefGoogle Scholar
  44. 44.
    S. Wang, D. Zhao, Matrix Optics (CHEP-Springer, 2000)Google Scholar
  45. 45.
    I.M. Besieris, A.M. Shaarawi, Opt. Lett. 32, 2447–2449 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    H. Li, J. Wang, M. Tang, X. Li, J. Opt. Soc. Am. A 34, 1114–1118 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185–8189 (1992)ADSCrossRefGoogle Scholar
  48. 48.
    C.M. Cisowski, R.R.B. Correia, Opt. Lett. 43, 499–502 (2018)ADSCrossRefGoogle Scholar
  49. 49.
    M. Ornigotti, Opt. Lett. 43, 1411–1414 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and EngineeringHenan University of Science and TechnologyLuoyangChina
  2. 2.Henan Key Laboratory of Photoelectric Energy Storage Materials and ApplicationsLuoyangChina

Personalised recommendations