Advertisement

Applied Physics B

, 125:52 | Cite as

Propagation of a radial phase-locked partially coherent elegant Laguerre–Gaussian beam array in non-Kolmogorov medium

  • Dajun LiuEmail author
  • Haiyang Zhong
  • Guiqiu Wang
  • Hongming Yin
  • Yaochuan WangEmail author
Article
  • 46 Downloads

Abstract

A model of a radial phase-locked partially coherent elegant Laguerre–Gaussian (PCELG) beam array has first been introduced in theory. The analytical propagation equation for the cross-spectral density function of a radial phase-locked PCELG beam array in non-Kolmogorov medium has been derived using the extended Huygens–Fresnel principle. The average intensity and spectral degree of coherence properties of a radial phase-locked PCELG beam array propagating in non-Kolmogorov medium have been studied in details using the numerical examples. One can find that the evolution properties of a radial phase-locked PCELG beam array propagating in non-Kolmogorov medium are affected by the initial beam parameters and the non-Kolmogorov medium, and the beam array propagating in non-Kolmogorov medium will evolve into a solid beam with Gaussian-like distribution in the far field.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (11604038, 11875096, 11404048), Natural Science Foundation of Liaoning Province (201602062, 201602061) and the Fundamental Research Funds for the Central Universities (3132018235, 3132018236).

References

  1. 1.
    H.T. Eyyuboğlu, Y. Cai, Non-Kolmogorov spectrum scintillation aspects of dark hollow and flat topped beams. Opt. Commun. 285, 969–974 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Huang, G. Zhao, Z. Duan, D. He, Z. Gao, F. Wang, Spreading and M-2-factor of elegant Hermite–Gaussian beams through non-Kolmogorov turbulence. J. Mod. Optic. 58, 912–917 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    F. Wang, X.L. Liu, Y.J. Cai, Propagation of partially coherent beam in turbulent atmosphere: a review. Prog. Electromagn. Res. 150, 123–143 (2015)CrossRefGoogle Scholar
  4. 4.
    Z.-Z. Song, Z.-J. Liu, K.-Y. Zhou, Q.-G. Sun, S.-T. Liu, Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence. Chin. Phys. B 26, 024201 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    X. Wang, M. Yao, X. Yi, Z. Qiu, Z. Liu, Spreading and evolution behavior of coherent vortices of multi-Gaussian Schell-model vortex beams propagating through non-Kolmogorov turbulence. Opt. Laser Technol. 87, 99–107 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    M. Tang, D. Zhao, X. Li, J. Wang, Propagation of radially polarized multi-cosine Gaussian Schell-model beams in non-Kolmogorov turbulence. Opt. Commun. 407, 392–397 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    H. Zhang, W. Fu, Polarization properties of square multi-Gaussian Schell-model beam propagating through non-Kolmogorov turbulence. Optik 134, 161–169 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Zhou, Y.S. Yuan, J. Qu, W. Huang, Propagation properties of Laguerre–Gaussian correlated Schell-model beam in non-Kolmogorov turbulence. Opt. Express 24, 10682–10693 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    J. Yu, Y. Chen, L. Liu, X. Liu, Y. Cai, Splitting and combining properties of an elegant Hermite–Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence. Opt. Express 23, 13467–13481 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    M. Cheng, Y. Zhang, Y. Zhu, J. Gao, W. Dan, Z. Hu, F. Zhao, Effects of non-Kolmogorov turbulence on the orbital angular momentum of Hankel–Bessel–Schell beams. Opt. Laser Technol. 67, 20–24 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    J. Ou, Y. Jiang, J. Zhang, H. Tang, Y. He, S. Wang, J. Liao, Spreading of spiral spectrum of Bessel–Gaussian beam in non-Kolmogorov turbulence. Opt. Commun. 318, 95–99 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Qin, R. Tao, P. Zhou, X. Xu, Z. Liu, Propagation of partially coherent Bessel–Gaussian beams carrying optical vortices in non-Kolmogorov turbulence. Opt. Laser Technol. 56, 182–188 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    E. Shchepakina, O. Korotkova, Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence. Opt. Express 18, 10650–10658 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    D. Liu, Y. Wang, Properties of a random electromagnetic multi-Gaussian Schell-model vortex beam in oceanic turbulence. Appl. Phys. B 124, 176 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    D. Zhi, R.M. Tao, P. Zhou, Y.X. Ma, W.M. Wu, X.L. Wang, L. Si, Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence. Opt. Commun. 387, 157–165 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    M.M. Tang, D.M. Zhao, Regions of spreading of Gaussian array beams propagating through oceanic turbulence. Appl. Opt. 54, 3407–3411 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    L. Lu, Z.Q. Wang, J.H. Zhang, P.F. Zhang, C.H. Qiao, C.Y. Fan, X.L. Ji, Average intensity of M × N Gaussian array beams in oceanic turbulence. Appl. Opt. 54, 7500–7507 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    D. Liu, Y. Wang, Evolution properties of a radial phased-locked partially coherent Lorentz-Gauss array beam in oceanic turbulence. Opt. Laser Technol. 103, 33–41 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    H.L. Liu, Y.F. Lu, J. Xia, D. Chen, W. He, X.Y. Pu, Radial phased-locked partially coherent flat-topped vortex beam array in non-Kolmogorov medium. Opt. Express 24, 19695–19712 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    K.L. Wang, C.H. Zhao, Propagation properties of a radial phased-locked partially coherent anomalous hollow beam array in turbulent atmosphere. Opt. Laser Technol. 57, 44–51 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Y.P. Huang, P. Huang, F.H. Wang, G.P. Zhao, A.P. Zeng, The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite–Gaussian linear array beams. Opt. Commun. 336, 146–152 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    D. Liu, Y. Wang, H. Zhong, Average intensity of radial phased-locked partially coherent standard Hermite–Gaussian beam in oceanic turbulence. Opt. Laser Technol. 106, 495–505 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Mao, Z. Mei, J. Gu, Y. Zhao, Radial Gaussian-Schell-model array beams in oceanic turbulence. Appl. Phys. B 123, 111 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    L. Lu, P.F. Zhang, C.Y. Fan, C.H. Qiao, Influence of oceanic turbulence on propagation of a radial Gaussian beam array. Opt. Express 23, 2827–2836 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    H. Xu, Z. Cui, J. Qu, Propagation of elegant Laguerre–Gaussian beam in non-Kolmogorov turbulence. Opt. Express 19, 21163–21173 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    H.D.A. Jeffrey, Handbook of Mathematical Formulas and Integrals (4th Edition) (Academic Press, Cambridge, 2008)zbMATHGoogle Scholar
  27. 27.
    E. Wolf, Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 312, 263–267 (2003)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    G.Q. Zhou, Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere. Opt. Express 19, 24699–24711 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceDalian Maritime UniversityDalianChina

Personalised recommendations