Applied Physics B

, 125:47 | Cite as

Fullerene functionalized gold nanoparticles for optical limiting of continuous wave lasers

  • M. C. Frare
  • R. Pilot
  • C. C. De Filippo
  • V. Weber
  • R. SignoriniEmail author
  • M. Maggini
  • R. Bozio


Due to the increasingly widespread diffusion of lasers in many scientific and technological fields, the engineering and the fabrication of systems able to protect either human eyes or delicate equipment from laser radiation damage is nowadays attracting lots of interest in the scientific community. In this work, the optical limiting properties of fulleropyrrolidine, gold nanoparticles and hybrid systems in solution and in a polycarbonate matrix are investigated using a continuous wave laser at 514 nm, by optical limiting, Z-scan and temporal response measurements. The comparison of the results, obtained with different techniques, has allowed us to show that thermal effects account for most of the nonlinear response in gold nanoparticles and in the hybrid system; moreover, the latter exhibits a lower nonlinear threshold and a faster response compared to the former. This paper provides a contribution to the engineering of efficient protection devices in the continuous wave regime.



The Italian Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) is gratefully acknowledged for financial support through the FIRB project ITALNANONET (RBPR05JH2P_001). Authors thank Patrizio Salice for TGA measurements.

Supplementary material

340_2019_7160_MOESM1_ESM.doc (6.4 mb)
Supplementary material 1 (DOC 6591 KB)


  1. 1.
    S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, Chem. Phys. Lett. 356, 403–408 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    L. Sarkhosh, H. Aleali, R. Karimzadeh, N. Mansour, Phys. Status Solidi 207, 2303–2310 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    H. Nadjari, F. Hajiesmaeilbaigi, A. Motamedi, Laser Phys. 20, 859–864 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    E. Shahriari, W.M.M. Yunus, E. Saion, Braz. J. Phys. 40, 256–260 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    H. Aleali, L. Sarkhosh, R. Karimzadeh, N. Mansour, J. Nonlinear Opt. Phys. Mater. 21, 1250024 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    M.H. Majles Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, F. Divsar, J. Quant. Spectrosc. Radiat. Transf. 113, 366–372 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    M.C. Frare, V. Weber, R. Signorini, R. Bozio, Laser Phys. 24, 105901 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    L.W. Tutt, T. Boggest, Prog. Quant. Electr. 17, 299–338 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    R. Signorini, M. Meneghetti, R. Bozio, M. Maggini, G. Scorrano, M. Prato, G. Brusatin, P. Innocenzi, M. Guglielmi, Carbon, 38, 1653–1662 (2000)CrossRefGoogle Scholar
  10. 10.
    R.C. Hollins, Curr, Opin. Solid State Mater. Sci. 4, 189–196 (1999)CrossRefGoogle Scholar
  11. 11.
    M. Maggini, G. Scorrano, M. Prato, G. Brusatin, P. Innocenzi, M. Guglielmi, A. Renier, R. Signorini, M. Meneghetti, R. Bozio, Adv. Mater. 7, 404–406 (1995)CrossRefGoogle Scholar
  12. 12.
    N. Sun, Y. Wang, Y. Song, Z. Guo, L. Dai, D. Zhu, Chem. Phys. Lett. 344, 277–282 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    R.A. Ganeev, A.I. Ryasnyanskiœ, M.K. Kodirov, Sh.R. Kamalov, T. Usmanov, Opt. Spectrosc. 93(5), 789–796 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    X.-L. Zhang, Z.-B. Liu, X.-Q. Yan, X.-C. Li, Y.-S. Chen, J.-G. Tian, J. Opt. 17015501–17015508 (2015)Google Scholar
  15. 15.
    D. Dini, M.J.F. Calvete, M. Hanack, Chem. Rev. 116, 13043–13233 (2016)CrossRefGoogle Scholar
  16. 16.
    D.M. Guldi, M. Prato, Acc. Chem. Res. 33, 695–703 (2000)CrossRefGoogle Scholar
  17. 17.
    V. Amendola, G. Mattei, C. Cusan, M. Prato, M. Meneghetti, Synth. Met. 155, 283–286 (2005)CrossRefGoogle Scholar
  18. 18.
    M.C. Frare, R. Signorini, V. Weber, R. Bozio, Proc. SPIE 8901, 890113-1 (2013)Google Scholar
  19. 19.
    F. Lu, S. Xiao, Y. Li, Y. Song, H. Liu, H. Li, J. Zhuang, Y. Liu, L. Gan, D. Zhu, Inorg. Chem. Commun. 7, 960–962 (2004)CrossRefGoogle Scholar
  20. 20.
    P. Zhang, S. Zhang, J. Li, D. Liu, Z.-X. Guo, C. Ye, D. Zhu, Chem. Phys. Lett. 382, 599–604 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    H. He, C. Xie, J. Ren, Anal. Chem. 80, 5951–5957 (2008)CrossRefGoogle Scholar
  22. 22.
    M. Maggini, G. Scorrano, M. Prato, J. Am. Chem. Soc. 115, 9798–9799 (1993)CrossRefGoogle Scholar
  23. 23.
    N. Martín, M. Altable, S. Filippone, A. Martín-Domenech, L. Echegoyen, C.M. Cardona, Angew. Chemie 118, 116–120 (2006)CrossRefGoogle Scholar
  24. 24.
    J. Turkevich, P.C. Stevenson, J. Hillier, Discuss. Faraday Soc. 11, 55–75 (1951)CrossRefGoogle Scholar
  25. 25.
    V. Amendola, M. Meneghetti, J. Phys. Chem. 113, 4277–4285 (2009)Google Scholar
  26. 26.
    M. Sastry, Curr. Sci. 85, 1735–1745 (2003)Google Scholar
  27. 27.
    J.M. McMahon, S.R. Emory, Langmuir 23, 1414–1418 (2007)CrossRefGoogle Scholar
  28. 28.
    K.G. Thomas, J. Zajicek, P.V. Kamat, Langmuir 18, 3722–3727 (2002)CrossRefGoogle Scholar
  29. 29.
    E. Della Gaspera, M. Guglielmi, G. Perotto, S. Agnoli, G. Granozzi, M.L. Post, A. Martucci, Sens. Actuators B Chem. 161, 675–683 (2012)CrossRefGoogle Scholar
  30. 30.
    M.J. Hostetler, A.C. Templeton, R.W. Murray, Langmuir 15, 3782–3789 (1999)CrossRefGoogle Scholar
  31. 31.
    N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, G. Mattei, RSC Adv. 7, 369–378 (2017)CrossRefGoogle Scholar
  32. 32.
    R. Pilot, A. Zoppi, S. Trigari, F.L. Deepak, E. Giorgetti, R. Bozio, Phys. Chem. Chem. Phys. 17, 7355–7365 (2015)CrossRefGoogle Scholar
  33. 33.
    C.H. Walker, J.V.S. John, P. Wisian-Neilson, Am. Chem. Soc. 123, 3846–3847 (2001)CrossRefGoogle Scholar
  34. 34.
    P. Wisian-Neilson, F.J. Garcìa-Alonso, Macromolecules 26, 7156–7160 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    J.L. Delgado, F. Oswald, F. Cardinali, F. Langa, N. Martìn, J. Org. Chem. 73, 3184–3188 (2008)CrossRefGoogle Scholar
  36. 36.
    P.K. Sudeep, B.I. Ipe, K.G. Thomas, M.V. George, S. Barazzouk, S. Hotchandani, P.V. Kamat, Nano Lett. 2, 29–35 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    H. Kuzmany, M. Matus, B. Burger, J. Winter, Adv. Mat. 94(10), 731–745 (1994) 6CrossRefGoogle Scholar
  38. 38.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, J. Raman Spectr. 27, 351–371 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    M. Geng, Y. Zhang, Q. Huang, B. Zhang, Q. Li, W. Li, J. Li, Carbon N. Y. 48, 3570–3574 (2010)CrossRefGoogle Scholar
  40. 40.
    P. Larkin, Infrared and Raman Spectroscopy. Principles and Spectral Interpretation (Elsevier, Amsterdam, 2011)Google Scholar
  41. 41.
    R.D. Glickman, Int. J. Toxicol. 21, 473 (2002)CrossRefGoogle Scholar
  42. 42.
    M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990)ADSCrossRefGoogle Scholar
  43. 43.
    F.L.S. Cuppo, A.M.F. Neto, S.L. Gomez, P. Palffy-Muhoray, J. Opt. Soc. Am. B 19, 1342–1348 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    F. Zhang, Q. Li, Y. Liu, S. Zhang, C. Wu, W. Guo, J. Therm. Anal. Calorim. 123, 431–437 (2016)CrossRefGoogle Scholar
  45. 45.
    F.L.S. Cuppo, A.M.F. Neto, Langmuir 18, 9647–9653 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Science and UdR INSTMUniversity of PaduaPaduaItaly

Personalised recommendations