Applied Physics B

, 125:44 | Cite as

Disintegration of multiple-beam Fizeau fringes in transmission using FFT analysis

  • W. A. RamadanEmail author
  • H. H. Wahba
  • M. A. El-Morsy


An investigation of fast Fourier transformation (FFT) spectrum appears from multiple-beam Fizeau fringes is presented. It is proven theoretically and demonstrated experimentally that the number of the appeared peaks is related to the interfered rays’ number. In addition, a detailed interpretation of (FFT) yields from multiple-beam Fizeau fringes analyses is illustrated. This interpretation proved that every peak of the FFT spectrum represents a set of two-beam interference. Therefore, the higher order FFT peaks are not an error. It is found that the frequencies of the appeared peaks are separated by a constant increment. Therefore, when we apply the inverse fast Fourier transformation (IFFT) on a selected peak we can get a two-beam intensity distribution image with a fringe frequency depending on the peak order number. This study removes confusion and answers some important questions concerning the multiple-beam interference. The presented analysis leads to disintegrate multiple-beam interferogram to its components of two-beam interferograms. This could facilitate recovering the phase map and provides more information from one multiple-beam interferogram.



The author would like to thank Prof. Dr. A. A. Hamza the leader of optics research in Mansoura and Damietta Universities for his kind encouragement. Also, many thanks to optics research group members in Damietta University for their sincere collaborations.


  1. 1.
    C.M.C.D. Hargreaves, Multiplebeam ‘transmission-like’ Fizeau fringes in the reflexion interference system. Nature 197, 890 (1963)ADSCrossRefGoogle Scholar
  2. 2.
    L.R. Heintze, H.D. Polster, J. Vrabel, A multiple-beam interferometer for use with spherical wavefronts. Appl. Opt. 6, 1924 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    R. Bünnagel, H.-A. Oehring, K. Steiner, “Fizeau interferometer for measuring the flatness of optical surfaces. Appl. Opt. 7, 331 (1968)ADSCrossRefGoogle Scholar
  4. 4.
    C. Roychoudhuri, in Optical Shop Testing, 3rd edn. by D. Malacara (Wiley, New York, 2007)Google Scholar
  5. 5.
    P. Hariharan, Basics of interferometry, 2nd edn. (Academic Press is an imprint of Elsevier, New York, 2007)Google Scholar
  6. 6.
    Y.P. Kumar, S. Chatterjee, Technique for the focal-length measurement of positive lenses using Fizeau interferometry. Appl. Opt. 48, 730 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    D.G. Abdelsalam, M.S. Shaalan, M.M. Eloker, D. Kim, Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection. Opt. Lasers Eng. 48, 643 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Tolansky, Multiple beam interferometry of surfaces and films (Clarendon Press, Oxford, 1949)Google Scholar
  9. 9.
    A.C. Hall, M.-B. Interferometry, in Characterization of Solid Surfaces, ed. by P.F. Kane, G.B. Larrabee (Springer US, Boston, 1974), p. 33CrossRefGoogle Scholar
  10. 10.
    T.T. Kajava, H.M. Lauranto, A.T. Friberg, Interference pattern of the Fizeau interferometer, J. Opt. Soc. Am. A 11, 2045 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    D. Malacara, M. Servín, Z. Malacara, Interferogram Analysis For Optical Testing, 2nd edn. (CRC Press, Taylor and Francis Group, Bocca Raton, 2005)CrossRefGoogle Scholar
  12. 12.
    E. Stoykova, Transmission of a Gaussian beam by a Fizeau interferential wedge”, J. Opt. Soc. Am. A 22, 2756 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    B.V. Dorrı´o, J. Blanco-Garcı´a, C. Lo´pez, A.F. Doval, R. Soto, J.L. Ferna´ndez, M. Pe´rez-Amor, Phase error calculation in a Fizeau interferometer by Fourier expansion of the intensity profile”, Appl. Opt. 35, 61(1996)ADSCrossRefGoogle Scholar
  14. 14.
    J. Xu, Q. Xu, L. Chai, H. Peng, Algorithm for multiple-beam Fizeau interferograms with arbitrary phase shifts, Opt. Exp. 16, 18922 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    J. Xu, L. Sun, Y. Li, Y. Li, Principal component analysis of multiple-beam Fizeau interferograms with random phase shifts. Opt. Exp. 19, 14464 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    P.J. de Groot, Correlated errors in phase-shifting laser Fizeau interferometry. Appl. Opt. 53, 4334 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    J. Cheng, Z. Gao, Q. Yuan, K. Wang, L. Xu, Carrier squeezing interferometry with π/4 phase shift: phase extraction in the presence of multi-beam interference. Appl. Opt. 55, 1920 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    P. Hariharan, Digital phase-stepping interferometry: effects of multiply reflected beams. Appl. Opt. 26, 2506 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Surrel, Additive noise effect in digital phase detection, Appl. Opt. 36, 271 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    K. Hibino, Error-compensating phase measuring algorithms in a Fizeau interferometer. Opt. Rev. 6, 529 (1999)CrossRefGoogle Scholar
  21. 21.
    M.A. El-Morsy, T. Yatagai, A. Hamza, M.A. Mabrouk, T.Z.N. Sokkar, Multiple-beam Fizeau fringe-pattern analysis using Fourier transform method for accurate measurement of fiber refractive index profile of polymer fiber, J. Appl. Polym. Sci. 85, 475 (2002)CrossRefGoogle Scholar
  22. 22.
    M.A. El-Morsy, T. Yatagai, A.A. Hamza, M.A. Mabrouk, T.Z.N. Sokkar, Automatic refractive index profiling of fibers by phase analysis method using Fourier transform”, Opt. Lasers Eng. 38, 509 (2002)CrossRefGoogle Scholar
  23. 23.
    W.A. Ramadan, Intensity distribution of Fizeau fringes in transmission with the real path of the interfered multiple-beams, Opt. Lasers in Eng. 58, 27 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    W.A. Ramadan, H.H. Wahba, Simulated Fizeau ring fringes in transmission through spherical and plane reflected surfaces. Appl. Phys. B 124, 2 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • W. A. Ramadan
    • 1
    Email author
  • H. H. Wahba
    • 1
    • 2
  • M. A. El-Morsy
    • 1
    • 3
  1. 1.Physics Department, Faculty of ScienceDamietta UniversityNew DamiettaEgypt
  2. 2.Physics Department, Faculty of ScienceTaif UniversityTaif, Al-HaweiahSaudi Arabia
  3. 3.Physics Department, College of Science and Humanitarian StudiesPrince Sattam bin Abdulaziz UniversityAl-kharjSaudi Arabia

Personalised recommendations