Advertisement

Applied Physics B

, 125:48 | Cite as

Structural, morphological, and Z-scan technique for a temperature-controllable chemical reaction synthesis of zinc sulfide nanoparticles

  • R. K. Fakher Alfahed
  • Ahmed S. Al-Asadi
  • Hussain Ali BadranEmail author
  • Khalid I. Ajeel
Article
  • 49 Downloads

Abstract

Zinc sulfide (ZnS) nanoparticles were fabricated using a new route chemical reaction technique. During growth, the temperature of the annealing was controlled between 200 °C and 500 °C. The structural, morphological and optical properties of as-synthesized nanoparticles were examined using scanning electron microscopy (SEM), X-ray diffraction and ultraviolet–visible (UV–Vis) absorption. The X-ray diffraction pattern exhibits a wurtzite crystal structure at room temperature. The thermal nonlinear refractive indexes of the ZnSNP films are calculated based on diffraction ring patterns and the Z-scan technique. The optical limiting properties were also studied. The efficiency of the optical limiting was found to depend on the temperature of the sample. The mechanism of optical limiting is found to be predominantly of a thermal origin. The evaluation of the figure of merit (W > 1) shows that the ZnSNP films are sufficient for application in all-optical switching technology. These results show that the ZnSNPs have potential application in nonlinear optics.

Notes

References

  1. 1.
    A.S. Pawbake, G. Ravindra, G. Waykar, D.J. Late, S.R. Jadkar, ACS Appl. Mater. Interfaces 8, 3359 (2016)CrossRefGoogle Scholar
  2. 2.
    Z.Wen, L.P.Zhu, Y.G.Li, Z.Y.Zhang, Z.H.Ye, Sens. Actuators B 203, 873 (2014)CrossRefGoogle Scholar
  3. 3.
    M.H. Mohammed, F.N. Ajeel, A.M. Khudhair, Chin. J. Phys 55, 1576 (2017)CrossRefGoogle Scholar
  4. 4.
    A.S. Al-Asadi, J. Zhang, J.b. Li, R.A. Potyrailo, A. Kolmakov, Microsc Icroanal 21, 765 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    A.S. Al-Asadi, L.A. Henley, M. Wasala, B. Muchharla, N. Perea-Lopez, V. Carozo, Z. Lin, M. Terrones, K. Mondal, K. Kordas, S. Talapatra, J. Appl. Phys. 121,124303 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan, C.L. Bai, Angewandte Chem 117, 1295 (2005)CrossRefGoogle Scholar
  7. 7.
    B. Baruwati, D.K. Kumar, S.V. Manorama, Sensors and Actuators B: Chem 119, 676 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Vafaee, M.S. Ghamsari, Mater. Lett. 61, 3265 (2007)CrossRefGoogle Scholar
  9. 9.
    F.F. Dong, Y.M. Guo, J. Zhang, Y.H. Li, L. Yang, Q.L. Fang, H. Fang, K. Jiang, Mater. Lett. 97, 59 (2013)CrossRefGoogle Scholar
  10. 10.
    Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, Mater. Lett. 60, 3548 (2006)CrossRefGoogle Scholar
  11. 11.
    D.A. Dholakia, G. Solanki, S. Patel, M. Agarwal, Bull. Mater. Sci. 24, 291 (2001)CrossRefGoogle Scholar
  12. 12.
    H.A. Badran, M.F. Al-Mudhaffer, Q.M.A. Hassan, A.Y. Al-Ahmad, Chalcogenide Lett. 9, 483 (2012)Google Scholar
  13. 13.
    X.S. Fang, T.Y. Zhai, U.K. Gautam, L. Li, L.M. Wu, Y. Bando, D. Golberg, Prog. Mater Sci. 56, 175 (2011)CrossRefGoogle Scholar
  14. 14.
    Y.D. Li, Y. Ding, Y. Zhang, Y.T. Qian, J. Phys. Chem. Solids 60, 13 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Y.D. Glinka, S.H. Lin, L.P. Hwang, Y.T. Chen, N.H. Tolk, Phys. Rev. B 64, 085421 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    G. Qin, H. Song, B. Zhang, J. Lin, J. Duan, G. Yao, Phys. Rev. B 54, 2548 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Yang, X. Chen, Y. Feng, G. Yang, Nano Lett. 7, 3879 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    C.W. Chen, K.H. Chen, C.H. Shen, A. Ganguly, L.C. Chen, J.J. Wu, H.I. Wen, W.F. Pong, Appl. Phys. Lett. 88, 241905 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    A.S. Al-Asadi, L.A. Henley, S. Ghosh, A. Quetz, I. Dubenko, N. Pradhan, L. Balicas, N. Perea-Lopez, V. Carozo, Z. Lin, M. Terrones, S. Talapatra, N. Ali, J. Appl. Phys. 119, 084306 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Yuan, L.Z. Min, B.Y. Qing, W.H. Chun, Z.Y. .Bo, F.X. .Wen, Y.D. Peng, Appl. Phys. Lett. 99, 103103 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    M.S. Gudiksen, J. Wang, C.M. Lieber, J. Phys. Chem. B 106, 4036 (2002)CrossRefGoogle Scholar
  22. 22.
    T. You, J. Yan, Z. Zhang, J. Li, J. Tian, J. Yun, W. Zhao, Mater. Lett. 66, 246 (2012)CrossRefGoogle Scholar
  23. 23.
    O.N. A.Vostrikov, M.Ya. Fedyaeva, A.V. Sokol, Shatrova Tech. Phys. Lett. 40, 1057 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Asghar, K. Mahmood, B.M. Samaa, S. Rabia, M.Y. Shahid, Mater Today: Proc 2(Part B), 5430 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Han Lin, C. Hwa Ho, ACS Omega 2, 4514 (2017)CrossRefGoogle Scholar
  26. 26.
    H.Gazy Lazim, K.I. Ajeel, H.A. Badran, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 145, 598 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    S.S. Kawar, B.H. Pawar, Micro Nano Lett. 5, 100 (2010)CrossRefGoogle Scholar
  28. 28.
    Y. Zhang, X.Y. Dang, J. Jin, T. Yu, B.Z. Li, Q. He, Y. Sun, Appl. Surf. Sci. 256, 6871 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    S.R. Kang, S.W. Shin, D.S. Choi, A.V. .Moholkar, J.H. Moon, J.H. Kim, Curr. Appl. Phys. 10, S473 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    C. Sabitha, K.D.A. Kumar, S. Valanarasu, A. Saranya, I.H. Joe, J. Mater. Sci. Mater. Electron. 29, 4612 (2017)CrossRefGoogle Scholar
  31. 31.
    H.A. Badran, Results Phys. 4, 69 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Q.M.A. Hassan, H.A. Badran, A.Y. AL-Ahmad, C.A. Emshary, Chin. Phys. B 22, 114209 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    H.A. Badran, A.Y. AL-Ahmad, M.F.A.L. -Mudhaffer, C. A. Emshary, Opt. Quant. Electron. 47, 1859 (2015)CrossRefGoogle Scholar
  34. 34.
    H.Ali Badran, A. Adil, R.K. Al–Fregi, A.S. Fakher Alfahed, Al–Asadi, J. Mater. Sci. 28, 17288 (2017)Google Scholar
  35. 35.
    H.A. Badran, Q.M. A.Hassan, A.Y. Al-Ahmad, C.A. Emshary, Can. J. Phys. 89, 1219 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    H.A. Badran, K.I. Ajeel, H. Gazy, Lazim. Mater. Res. Bull. 76, 422 (2016)CrossRefGoogle Scholar
  37. 37.
    H.A. Badran, A.A. Jari, Int. Res. J. Nat. Appl. Sci 4, 29 (2017)Google Scholar
  38. 38.
    H. Ali Badran, A. Al–Maliki, R.K. Fakher Alfahed, B. Ali Saeed, A.Y. Al–Ahmad, F.A. Al–Saymari, R.S. Elias J. Mater. Sci 29, 10890 (2018)Google Scholar
  39. 39.
    H.A. Badran, A. Imran, Q.M. Ali Hassan, Optik 127, 2659 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    K.A. AL-Adel, H.A. Badran, Eur. J. Appl. Eng. Sci. Res. 1, 66 (2012)Google Scholar
  41. 41.
    H.A. Badran, IOSR J. Appl. Phys. (IOSRJAP) 1, 33 (2012).  https://doi.org/10.9790/4861-0153337 CrossRefGoogle Scholar
  42. 42.
    H.A. Badran, Appl. Phys. B 119, 319 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    H.A. Badran, R. Ch. H.S. Abul–Hail, A.I. Shaker, Q.M.A. musa, Hassan, Appl. Phys. B, 123 (2017)Google Scholar
  44. 44.
    H.A. Badran, H.A. Sultan, Q.M. Ali Hassan, J. Mater. Sci.: Mater. Electron. 27, 6735 (2016)Google Scholar
  45. 45.
    F.A. Al-Saymari, H.A. Badran, A.Y. Al-Ahmad, C.A. Emshary, Indian J Phys 87, 1153 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    A.Y. AL-Ahmad, M.F.A.L. -Mudhaffer, H.A. Badran, C.A. Emshary, Opt. Laser Technol. 54, 72 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    H.A. Badran, A.Y. Taha, A.F. Abdulkader, C.A. Emshary, J. Ovonic. Res. 8, 161 (2012)Google Scholar
  48. 48.
    D. Bhone, S. Fischer, E. Obermeier, Phys. Chem. 88, 739 (1984)Google Scholar
  49. 49.
    H.A. Badran, Adv. Phys. Theor. Appl. 26, 36 (2013)Google Scholar
  50. 50.
    H.A. Badran, A.Y. AL-Ahmad, Q.M.A. Hassan, C.A. Emshary, Pramana J Phys. 86, 135 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    H.A. Badran, K.A. Al-Adil, H.G. Lasim, A.Y. Al-Ahmad, J. Mater. Sci. Mater. Electron. 27, 2212 (2016)CrossRefGoogle Scholar
  52. 52.
    A.A. Said, M. Sheik-Bahae, D.J. Hagan, T.H. Wei, J. Wang, E.W. Van Stryland, J. Opt. Soc. Am. B 9, 405 (1992)ADSCrossRefGoogle Scholar
  53. 53.
    B.L. Justus, A.L. Huston, A.J. Campillo, Appl. Phys. Lett. 63, 1483 (1993)ADSCrossRefGoogle Scholar
  54. 54.
    K.M. Nashold, D.P. Walter, J. Opt. Soc. Am. B 12, 1228 (1995)ADSCrossRefGoogle Scholar
  55. 55.
    K. Mansour, M.J. Soileau, E.W. Van Stryland, J. Opt. Soc. Am. B 9, 1100 (1992)ADSCrossRefGoogle Scholar
  56. 56.
    V. Joudrier, P. Bourdon, F. Hache, C. Flytzanis, Appl. Phys. B 70, 105 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    H.A. Badran, H.F. Hussain, K.I. Ajeel, Optik 127, 5301 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    F. Henari, Nat. Sci. 3, 728 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • R. K. Fakher Alfahed
    • 1
  • Ahmed S. Al-Asadi
    • 2
  • Hussain Ali Badran
    • 2
    Email author
  • Khalid I. Ajeel
    • 2
  1. 1.Al-Nahrain Nano-renewable Energy Research CenterAl-Nahrain UniversityBaghdadIraq
  2. 2.Physics DepartmentBasrah University, Education College for Pure SciencesBasraIraq

Personalised recommendations