Applied Physics B

, 125:50 | Cite as

Characterization and comparison between two coupling concepts of four-wavelength monolithic DBR ridge waveguide diode laser at 970 nm

  • Mahmoud TawfieqEmail author
  • Julia Kabitzke
  • Jörg Fricke
  • Pietro Della Casa
  • Arnim Ginolas
  • Peter Ressel
  • Hans Wenzel
  • Bernd Sumpf
  • Günther Tränkle


Compact laser sources emitting at multiple wavelengths from a single aperture are interesting in a multiple of applications. In this work, we characterize and compare two concepts of four-arm monolithic distributed Bragg reflector (DBR) ridge waveguide (RW) diode lasers emitting at four different wavelengths around 970 nm. The first concept has a single intersection point, where the four arms are joined before being emitted from the output aperture. The second concept has two intersection points: the first where the inner two arms are combined and a second where those are joined by the outer two arms. In the first case, the inner and outer arms show difference in performance, in particular the outer arms show worse opto-electrical and spatial parameters compared to the inner arms. In the second concept, similar performance is observed from all four arms, with smaller deviations between the inner and outer arms in the mentioned parameters. This study suggests that a serial combination of pairs of bends is preferable in this kind of multi-wavelength laser sources.



This work has been carried out under the Mid-TECH project funded by the European Union’s Horizon 2020 research and innovation program under Grant Agreement no. 642661. The authors also gratefully acknowledge P. Johne, S. Kienast, A. Traut and M. Hampe for the laser mounting and bonding.


  1. 1.
    S. Yamashita, T. Baba, K. Kashiwagi, Jpn. J. Appl. Phys. 43, 12R (2004)CrossRefGoogle Scholar
  2. 2.
    X. Feng, C. Lu, H.Y. Tam, P.K.A. Wai, IEEE Photonics Technol. Lett. 19, 17 (2007)Google Scholar
  3. 3.
    J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 78, 3–4 (2004)CrossRefGoogle Scholar
  4. 4.
    S. Sugimoto, K. Minemura, K. Kobayashi, M. Seki, M. Shikada, A. Ueki, T. Yanase, T. Miki, Electron. Lett. 13, 22 (1977)CrossRefGoogle Scholar
  5. 5.
    C. De Luca, M. Mazilu, A. Riches, C.S. Herrington, K. Dholakia, Anal. Chem. 82, 2 (2010)CrossRefGoogle Scholar
  6. 6.
    O. Brox, J. Fricke, A. Klehr, A. Maaßdorf, M. Matalla, H. Wenzel, G. Erbert, Electron. Lett. 51, 17 (2015)CrossRefGoogle Scholar
  7. 7.
    T.Y. Fan, IEEE J. Sel. Topics Quantum Electron. 11, 3 (2005)CrossRefGoogle Scholar
  8. 8.
    B. Sumpf, J. Kabitzke, J. Fricke, P. Ressel, A. Müller, M. Maiwald, G. Tränkle, Opt. Lett. 41, 16 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Maeda, T. Hirata, M. Suehiro, M. Hihara, A. Yamaguchi, H. Hosomatsu, Jpn. J. Appl. Phys. 31, 2B (1992)Google Scholar
  10. 10.
    R.K. Price, V.B. Verma, K.E. Tobin, V.C. Elarde, J.J. Coleman, IEEE Photonics Technol. Lett. 19, 20 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Maiwald, J. Fricke, A. Ginolas, J. Pohl, B. Sumpf, G. Erbert, G. Tränkle, Laser Photonics Rev 7:4 (2013)CrossRefGoogle Scholar
  12. 12.
    J.O. Gwaro, C. Brenner, B. Sumpf, A. Klehr, J. Fricke, M.R. Hofmann, IET Optoelectron. 11, 2 (2017)CrossRefGoogle Scholar
  13. 13.
    H. Masahiro Uemukai, A. Ishida, T. Ito, H. Suhara, A. Kitajima, H. Watanabe, Kan, Jpn. J. Appl. Phys. 51, 2R (2012)Google Scholar
  14. 14.
    M. Tawfieq, A. Müller, J. Fricke, P.D. Casa, P. Ressel, D. Feise, B. Sumpf, G. Tränkle, Opt. Lett. 42, 20 (2017)CrossRefGoogle Scholar
  15. 15.
    P.L. Liu, B.J. Li, P.J. Cressman, J.R. Debesis, S. Stoller, IEEE Photonics Technol. Lett. 3, 8 (1991)Google Scholar
  16. 16.
    R.B. Swint, T.S. Yeoh, V.C. Elarde, J.J. Coleman, M.S. Zediker, IEEE Photonics Technol. Lett. 16:1 (2004)CrossRefGoogle Scholar
  17. 17.
    P. Ressel, G. Erbert, U. Zeimer, K. Hausler, G. Beister, B. Sumpf, A. Klehr, G. Trankle, IEEE Photonics Technol. Lett. 17, 5 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ferdinand-Braun-Institut, Leibniz Institut für HöchstfrequenztechnikBerlinGermany

Personalised recommendations